1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
|
Concepts
########
This page will give an overview of some important concepts to understand when working
with PySTAC. If you want to check code examples, see the :ref:`tutorials`.
.. _stac_version_support:
STAC Spec Version Support
=========================
The latest version of PySTAC supports STAC Spec |stac_version| and will automatically
update any catalogs to this version. To work with older versions of the STAC Spec,
please use an older version of PySTAC:
================= ==============
STAC Spec Version PySTAC Version
================= ==============
>=1.0 Latest
0.9 0.4.*
0.8 0.3.*
<0.8 *Not supported*
================= ==============
Reading STACs
=============
PySTAC can read STAC data from JSON. Generally users read in the root catalog, and then
use the python objects to crawl through the data. Once you read in the root of the STAC,
you can work with the STAC in memory.
.. code-block:: python
from pystac import Catalog
catalog = Catalog.from_file('/some/example/catalog.json')
for root, catalogs, items in catalog.walk():
# Do interesting things with the STAC data.
To see how to hook into PySTAC for reading from alternate URIs such as cloud object
storage, see :ref:`using stac_io`.
Writing STACs
=============
While working with STACs in-memory don't require setting file paths, in order to save a
STAC, you'll need to give each STAC object a ``self`` link that describes the location
of where it should be saved to. Luckily, PySTAC makes it easy to create a STAC catalog
with a :stac-spec:`canonical layout <best-practices.md#catalog-layout>` and with the
links that follow the :stac-spec:`best practices <best-practices.md#use-of-links>`. You
simply call ``normalize_hrefs`` with the root directory of where the STAC will be saved,
and then call ``save`` with the type of catalog (described in the :ref:`catalog types`
section) that matches your use case.
.. code-block:: python
from pystac import (Catalog, CatalogType)
catalog = Catalog.from_file('/some/example/catalog.json')
catalog.normalize_hrefs('/some/copy/')
catalog.save(catalog_type=CatalogType.SELF_CONTAINED)
copycat = Catalog.from_file('/some/copy/catalog.json')
Normalizing HREFs
-----------------
The ``normalize_hrefs`` call sets HREFs for all the links in the STAC according to the
Catalog, Collection and Items, all based off of the root URI that is passed in:
.. code-block:: python
catalog.normalize_hrefs('/some/location')
catalog.save(catalog_type=CatalogType.SELF_CONTAINED)
This will lay out the HREFs of the STAC according to the :stac-spec:`best practices
document <best-practices.md>`.
Layouts
~~~~~~~
PySTAC provides a few different strategies for laying out the HREFs of a STAC.
To use them you can pass in a strategy when instantiating a catalog or when
calling `normalize_hrefs`.
Using templates
'''''''''''''''
You can utilize template strings to determine the file paths of HREFs set on Catalogs,
Collection or Items. These templates use python format strings, which can name
the property or attribute of the item you want to use for replacing the template
variable. For example:
.. code-block:: python
from pystac.layout import TemplateLayoutStrategy
strategy = TemplateLayoutStrategy(item_template="${collection}/${year}/${month}")
catalog.normalize_hrefs('/some/location', strategy=strategy)
catalog.save(catalog_type=CatalogType.SELF_CONTAINED)
The above code will save items in subfolders based on the collection ID, year and month
of it's datetime (or start_datetime if a date range is defined and no datetime is
defined). Note that the forward slash (``/``) should be used as path separator in the
template string regardless of the system path separator (thus both in POSIX-compliant
and Windows environments).
You can use dot notation to specify attributes of objects or keys in dictionaries for
template variables. PySTAC will look at the object, it's ``properties`` and its
``extra_fields`` for property names or dictionary keys. Some special cases, like
``year``, ``month``, ``day`` and ``date`` exist for datetime on Items, as well as
``collection`` for Item's Collection's ID.
See the documentation on :class:`~pystac.layout.LayoutTemplate` for more documentation
on how layout templates work.
Using custom functions
''''''''''''''''''''''
If you want to build your own strategy, you can subclass ``HrefLayoutStrategy`` or use
:class:`~pystac.layout.CustomLayoutStrategy` to provide functions that work with
Catalogs, Collections or Items. Similar to the templating strategy, you can provide a
fallback strategy (which defaults to
:class:`~pystac.layout.BestPracticesLayoutStrategy`) for any stac object type that you
don't supply a function for.
Set a default catalog layout strategy
'''''''''''''''''''''''''''''''''''''
Instead of fixing the HREFs of child objects retrospectively using `normalize_hrefs`,
you can also define a default strategy for a catalog. When instantiating a catalog,
pass in a custom strategy and base href. Consequently, the HREFs of all child
objects and items added to the catalog tree will be set correctly using that strategy.
.. code-block:: python
from pystac import Catalog, Collection, Item
catalog = Catalog(...,
href="/some/location/catalog.json",
strategy=custom_strategy)
collection = Collection(...)
item = Item(...)
catalog.add_child(collection)
collection.add_item(item)
catalog.save()
.. _catalog types:
Catalog Types
-------------
The STAC :stac-spec:`best practices document <best-practices.md>` lays out different
catalog types, and how their links should be formatted. A brief description is below,
but check out the document for the official take on these types:
The catalog types will also dictate the asset HREF formats. Asset HREFs in any catalog
type can be relative or absolute may be absolute depending on their location; see the
section on :ref:`rel vs abs asset` below.
Self-Contained Catalogs
~~~~~~~~~~~~~~~~~~~~~~~
A self-contained catalog (indicated by ``catalog_type=CatalogType.SELF_CONTAINED``)
applies to STACs that do not have a long term location, and can be moved around. These
STACs are useful for copying data to and from locations, without having to change any
link metadata.
A self-contained catalog has two important properties:
- It contains only relative links
- It contains **no** self links.
For a catalog that is the most easy to copy around, it's recommended that item assets
use relative links, and reside in the same directory as the item's STAC metadata file.
Relative Published Catalogs
~~~~~~~~~~~~~~~~~~~~~~~~~~~
A relative published catalog (indicated by
``catalog_type=CatalogType.RELATIVE_PUBLISHED``) is one that is tied at it's root to a
specific location, but otherwise contains relative links. This is designed so that a
self-contained catalog can be 'published' online by just adding one field (the self
link) to its root catalog.
A relative published catalog has the following properties:
- It contains **only one** self link: the root of the catalog contains a (necessarily
absolute) link to it's published location.
- All other objects in the STAC contain relative links, and no self links.
Absolute Published Catalogs
~~~~~~~~~~~~~~~~~~~~~~~~~~~
An absolute published catalog (indicated by
``catalog_type=CatalogType.ABSOLUTE_PUBLISHED``) uses absolute links for everything. It
is preferable where possible, since it allows for the easiest provenance tracking out of
all the catalog types.
An absolute published catalog has the following properties:
- Each STAC object contains only absolute links.
- Each STAC object has a self link.
It is not recommended to have relative asset HREFs in an absolute published catalog.
Relative vs Absolute HREFs
--------------------------
HREFs inside a STAC for either links or assets can be relative or absolute.
Relative vs Absolute Link HREFs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Absolute links point to their file locations in a fully described way. Relative links
are relative to the linking object's file location. For example, if a catalog at
``/some/location/catalog.json`` has a link to an item that has an HREF set to
``item-id/item-id.json``, then that link should resolve to the absolute path
``/some/location/item-id/item-id.json``.
Links are set as absolute or relative HREFs at save time, as determine by the root
catalog's catalog_type :attr:`~pystac.Catalog.catalog_type`. This means that, even if
the stored HREF of the link is absolute, if the root
``catalog_type=CatalogType.RELATIVE_PUBLISHED`` or
``catalog_type=CatalogType.SELF_CONTAINED`` and subsequent serializing of the any links
in the catalog will produce a relative link, based on the self link of the parent
object.
You can make all the links of a catalog relative or absolute by setting the
:func:`~pystac.Catalog.catalog_type` field then resaving the entire catalog.
.. _rel vs abs asset:
Relative vs Absolute Asset HREFs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Asset HREFs can also be relative or absolute. If an asset HREF is relative, then it is
relative to the Item's metadata file. For example, if the item at
``/some/location/item-id/item-id.json`` had an asset with an HREF of ``./image.tif``,
then the fully resolved path for that image would be
``/some/location/item-id/image.tif``
You can make all the asset HREFs of a catalog relative or absolute using the
:func:`Catalog.make_all_asset_hrefs_relative
<pystac.Catalog.make_all_asset_hrefs_relative>` and
:func:`Catalog.make_all_asset_hrefs_absolute
<pystac.Catalog.make_all_asset_hrefs_absolute>` methods. Note that these will not move
any files around, and if the file location does not share a common parent with the
asset's item's self HREF, then the asset HREF will remain absolute as no relative path
is possible.
Including a ``self`` link
-------------------------
Every stac object has a :func:`~pystac.STACObject.save_object` method, that takes as an
argument whether or not to include the object's self link. As noted in the section on
:ref:`catalog types`, a self link is necessarily absolute; if an object only contains
relative links, then it cannot contain the self link. PySTAC uses self links as a way of
tracking the object's file location, either what it was read from or it's pending save
location, so each object can have a self link even if you don't ever want that self link
written (e.g. if you are working with self-contained catalogs).
.. _using stac_io:
I/O in PySTAC
=============
The :class:`pystac.StacIO` class defines fundamental methods for I/O
operations within PySTAC, including serialization and deserialization to and from
JSON files and conversion to and from Python dictionaries. This is an abstract class
and should not be instantiated directly. However, PySTAC provides a
:class:`pystac.stac_io.DefaultStacIO` class with minimal implementations of these
methods. This default implementation provides support for reading and writing files
from the local filesystem as well as HTTP URIs (using ``urllib``). This class is
created automatically by all of the object-specific I/O methods (e.g.
:meth:`pystac.Catalog.from_file`), so most users will not need to instantiate this
class themselves.
If you are dealing with a STAC catalog with URIs that require authentication.
It is possible provide auth headers (or any other customer headers) to the
:class:`pystac.stac_io.DefaultStacIO`.
.. code-block:: python
from pystac import Catalog
from pystac import StacIO
stac_io = StacIO.default()
stac_io.headers = {"Authorization": "<some-auth-header>"}
catalog = Catalog.from_file("<URI-requiring-auth>", stac_io=stac_io)
You can double check that requests PySTAC is making by adjusting logging level so
that you see all API calls.
.. code-block:: python
import logging
logging.basicConfig()
logger = logging.getLogger('pystac')
logger.setLevel(logging.DEBUG)
If you require more custom logic for I/O operations or would like to use a
3rd-party library for I/O operations (e.g. ``requests``),
you can create a sub-class of :class:`pystac.StacIO`
(or :class:`pystac.stac_io.DefaultStacIO`) and customize the methods as
you see fit. You can then pass instances of this custom sub-class into the ``stac_io``
argument of most object-specific I/O methods. You can also use
:meth:`pystac.StacIO.set_default` in your client's ``__init__.py`` file to make this
sub-class the default :class:`pystac.StacIO` implementation throughout the library.
For example, the following code examples will allow
for reading from AWS's S3 cloud object storage using `boto3
<https://boto3.amazonaws.com/v1/documentation/api/latest/index.html>`__
or Azure Blob Storage using the `Azure SDK for Python
<https://learn.microsoft.com/en-us/python/api/overview/azure/storage-blob-readme?view=azure-python>`__:
.. tab-set::
.. tab-item:: AWS S3
.. code-block:: python
from urllib.parse import urlparse
import boto3
from pystac import Link
from pystac.stac_io import DefaultStacIO, StacIO
from typing import Union, Any
class CustomStacIO(DefaultStacIO):
def __init__(self):
self.s3 = boto3.resource("s3")
super().__init__()
def read_text(
self, source: Union[str, Link], *args: Any, **kwargs: Any
) -> str:
parsed = urlparse(source)
if parsed.scheme == "s3":
bucket = parsed.netloc
key = parsed.path[1:]
obj = self.s3.Object(bucket, key)
return obj.get()["Body"].read().decode("utf-8")
else:
return super().read_text(source, *args, **kwargs)
def write_text(
self, dest: Union[str, Link], txt: str, *args: Any, **kwargs: Any
) -> None:
parsed = urlparse(dest)
if parsed.scheme == "s3":
bucket = parsed.netloc
key = parsed.path[1:]
self.s3.Object(bucket, key).put(Body=txt, ContentEncoding="utf-8")
else:
super().write_text(dest, txt, *args, **kwargs)
StacIO.set_default(CustomStacIO)
.. tab-item:: Azure Blob Storage
.. code-block:: python
import os
import re
from typing import Any, Dict, Optional, Tuple, Union
from urllib.parse import urlparse
from azure.core.credentials import (
AzureNamedKeyCredential,
AzureSasCredential,
TokenCredential,
)
from azure.storage.blob import BlobClient, ContentSettings
from pystac import Link
from pystac.stac_io import DefaultStacIO
BLOB_HTTPS_URI_PATTERN = r"https:\/\/(.+?)\.blob\.core\.windows\.net"
AzureCredentialType = Union[
str,
Dict[str, str],
AzureNamedKeyCredential,
AzureSasCredential,
TokenCredential,
]
class BlobStacIO(DefaultStacIO):
"""A custom StacIO class for reading and writing STAC objects
from/to Azure Blob storage.
"""
conn_str: Optional[str] = os.getenv("AZURE_STORAGE_CONNECTION_STRING")
account_url: Optional[str] = None
credential: Optional[AzureCredentialType] = None
overwrite: bool = True
def _is_blob_uri(self, href: str) -> bool:
"""Check if href matches Blob URI pattern."""
if re.search(
re.compile(BLOB_HTTPS_URI_PATTERN), href
) is not None or href.startswith("abfs://"):
return True
else:
return False
def _parse_blob_uri(self, uri: str) -> Tuple[str, str]:
"""Parse the container and blob name from a Blob URI.
Parameters
----------
uri
An Azure Blob URI.
Returns
-------
The container and blob names.
"""
if uri.startswith("abfs://"):
path = uri.replace("abfs://", "/")
else:
path = urlparse(uri).path
parts = path.split("/")
container = parts[1]
blob = "/".join(parts[2:])
return container, blob
def _get_blob_client(self, uri: str) -> BlobClient:
"""Instantiate a `BlobClient` given a container and blob.
Parameters
----------
uri
An Azure Blob URI.
Returns
-------
A `BlobClient` for interacting with `blob` in `container`.
"""
container, blob = self._parse_blob_uri(uri)
if self.conn_str:
return BlobClient.from_connection_string(
self.conn_str,
container_name=container,
blob_name=blob,
)
elif self.account_url:
return BlobClient(
account_url=self.account_url,
container_name=container,
blob_name=blob,
credential=self.credential,
)
else:
raise ValueError(
"Must set conn_str or account_url (and credential if required)"
)
def read_text(self, source: Union[str, Link], *args: Any, **kwargs: Any) -> str:
if isinstance(source, Link):
source = source.href
if self._is_blob_uri(source):
blob_client = self._get_blob_client(source)
obj = blob_client.download_blob().readall().decode()
return obj
else:
return super().read_text(source, *args, **kwargs)
def write_text(
self, dest: Union[str, Link], txt: str, *args: Any, **kwargs: Any
) -> None:
"""Write STAC Objects to Blob storage. Note: overwrites by default."""
if isinstance(dest, Link):
dest = dest.href
if self._is_blob_uri(dest):
blob_client = self._get_blob_client(dest)
blob_client.upload_blob(
txt,
overwrite=self.overwrite,
content_settings=ContentSettings(content_type="application/json"),
)
else:
super().write_text(dest, txt, *args, **kwargs)
# set Blob storage connection string
BlobStacIO.conn_str = "my-storage-connection-string"
# OR set Blob account URL, credential
BlobStacIO.account_url = "https://myblobstorageaccount.blob.core.windows.net"
BlobStacIO.credential = AzureSasCredential("my-sas-token")
# modify overwrite behavior
BlobStacIO.overwrite = False
# set BlobStacIO as default StacIO
StacIO.set_default(BlobStacIO)
If you only need to customize read operations you can inherit from
:class:`~pystac.stac_io.DefaultStacIO` and only overwrite the read method. For example,
to take advantage of connection pooling using a `requests.Session
<https://requests.kennethreitz.org/en/master>`__:
.. code-block:: python
from urllib.parse import urlparse
import requests
from pystac.stac_io import DefaultStacIO, StacIO
from typing import Union, Any
class ConnectionPoolingIO(DefaultStacIO):
def __init__(self):
self.session = requests.Session()
def read_text(
self, source: Union[str, Link], *args: Any, **kwargs: Any
) -> str:
parsed = urlparse(uri)
if parsed.scheme.startswith("http"):
return self.session.get(uri).text
else:
return super().read_text(source, *args, **kwargs)
StacIO.set_default(ConnectionPoolingIO)
.. _validation_concepts:
Validation
==========
PySTAC includes validation functionality that allows users to validate PySTAC objects as
well JSON-encoded STAC objects from STAC versions `0.8.0` and later.
Enabling validation
-------------------
To enable the validation feature you'll need to have installed PySTAC with the optional
dependency via:
.. code-block:: bash
> pip install pystac[validation]
This installs the ``jsonschema`` package which is used with the default validator. If
you define your own validation class as described below, you are not required to have
this extra dependency.
Validating PySTAC objects
-------------------------
You can validate any :class:`~pystac.Catalog`, :class:`~pystac.Collection` or
:class:`~pystac.Item` by calling the :meth:`~pystac.STACObject.validate` method:
.. code-block:: python
item.validate()
This validates against the latest set of JSON schemas (which are included with the
PySTAC package) or older versions (which are hosted at https://schemas.stacspec.org).
This validation includes any extensions that the object extends (these are always
accessed remotely based on their URIs).
If there are validation errors, a :class:`~pystac.STACValidationError`
is raised.
You can also call :meth:`~pystac.Catalog.validate_all` on a Catalog or Collection to
recursively walk through a catalog and validate all objects within it.
.. code-block:: python
catalog.validate_all()
Validating STAC JSON
--------------------
You can validate STAC JSON represented as a ``dict`` using the
:func:`pystac.validation.validate_dict` method:
.. code-block:: python
import json
from pystac.validation import validate_dict
with open('/path/to/item.json') as f:
js = json.load(f)
validate_dict(js)
You can also recursively validate all of the catalogs, collections and items across STAC
versions using the :func:`pystac.validation.validate_all` method:
.. code-block:: python
import json
from pystac.validation import validate_all
with open('/path/to/catalog.json') as f:
js = json.load(f)
validate_all(js)
Using your own validator
------------------------
By default PySTAC uses the :class:`~pystac.validation.JsonSchemaSTACValidator`
implementation for validation. Users can define their own implementations of
:class:`~pystac.validation.stac_validator.STACValidator` and register it with pystac
using :func:`pystac.validation.set_validator`.
The :class:`~pystac.validation.JsonSchemaSTACValidator` takes a
:class:`~pystac.validation.schema_uri_map.SchemaUriMap`, which by default uses the
:class:`~pystac.validation.schema_uri_map.DefaultSchemaUriMap`. If desirable, users can
create their own implementation of
:class:`~pystac.validation.schema_uri_map.SchemaUriMap` and register
a new instance of :class:`~pystac.validation.JsonSchemaSTACValidator` using that schema
map with :func:`pystac.validation.set_validator`.
Extensions
==========
From the documentation on :stac-spec:`STAC Spec Extensions <extensions>`:
Extensions to the core STAC specification provide additional JSON fields that can be
used to better describe the data. Most tend to be about describing a particular
domain or type of data, but some imply functionality.
This library makes an effort to support all extensions that are part of the
`stac-extensions GitHub org
<https://stac-extensions.github.io/#extensions-in-stac-extensions-organization>`__, and
we are committed to supporting all STAC Extensions at the "Candidate" maturity level or
above (see the `Extension Maturity
<https://stac-extensions.github.io/#extension-maturity>`__ documentation for details).
Accessing Extension Functionality
---------------------------------
Extension functionality is encapsulated in classes that are specific to the STAC
Extension (e.g. Electro-Optical, Projection, etc.) and STAC Object
(:class:`~pystac.Collection`, :class:`pystac.Item`, or :class:`pystac.Asset`). All
classes that extend these objects inherit from
:class:`pystac.extensions.base.PropertiesExtension`, and you can use the
``ext`` accessor on the object to access the extension fields.
For instance, if you have an item that implements the :stac-ext:`Electro-Optical
Extension <eo>`, you can access the fields associated with that extension using
:meth:`Item.ext <pystac.Item.ext>`:
.. code-block:: python
import pystac
item = pystac.Item.from_file("tests/data-files/eo/eo-landsat-example.json")
# As long as the Item implements the EO Extension you can access all the
# EO properties directly
bands = item.ext.eo.bands
cloud_cover = item.ext.eo.cloud_cover
...
.. note:: ``ext`` will raise an :exc:`~pystac.ExtensionNotImplemented`
exception if the object does not implement that extension (e.g. if the extension
URI is not in that object's :attr:`~pystac.STACObject.stac_extensions` list). See
the `Adding an Extension`_ section below for details on adding an extension to an
object.
If you don't want to raise an error you can use
:meth:`Item.ext.has <pystac.extensions.ext.ItemExt.has>`
to first check if the extension is implemented on your pystac object:
.. code-block:: python
if item.ext.has("eo"):
bands = item.ext.eo.bands
See the documentation for each extension implementation for details on the supported
properties and other functionality.
Extensions have access to the properties of the object. *This attribute is a reference
to the properties of the* :class:`~pystac.Collection`, :class:`~pystac.Item` *or*
:class:`~pystac.Asset` *being extended and can therefore mutate those properties.*
For instance:
.. code-block:: python
item = pystac.Item.from_file("tests/data-files/eo/eo-landsat-example.json")
print(item.properties["eo:cloud_cover"])
# 78
print(item.ext.eo.cloud_cover)
# 78
item.ext.eo.cloud_cover = 45
print(item.properties["eo:cloud_cover"])
# 45
There is also a
:attr:`~pystac.extensions.base.PropertiesExtension.additional_read_properties` attribute
that, if present, gives read-only access to properties of any objects that own the
extended object. For instance, an extended :class:`pystac.Asset` instance would have
read access to the properties of the :class:`pystac.Item` that owns it (if there is
one). If a property exists in both additional_read_properties and properties, the value
in additional_read_properties will take precedence.
An ``apply`` method is available on extended objects. This allows you to pass in
property values pertaining to the extension. Properties that are required by the
extension will be required arguments to the ``apply`` method. Optional properties will
have a default value of ``None``:
.. code-block:: python
# Can also omit cloud_cover entirely...
item.ext.eo.apply(0.5, bands, cloud_cover=None)
Adding an Extension
-------------------
You can add an extension to a STAC object that does not already implement that extension
using the :meth:`Item.ext.add <pystac.extensions.ext.ItemExt.add>` method.
The :meth:`Item.ext.add <pystac.extensions.ext.ItemExt.add>` method adds the correct
schema URI to the :attr:`~pystac.Item.stac_extensions` list for the STAC object.
.. code-block:: python
# Load a basic item without any extensions
item = pystac.Item.from_file("tests/data-files/item/sample-item.json")
print(item.stac_extensions)
# []
# Add the Electro-Optical extension
item.ext.add("eo")
print(item.stac_extensions)
# ['https://stac-extensions.github.io/eo/v1.1.0/schema.json']
Extended Summaries
------------------
Extension classes like :class:`~pystac.extensions.projection.ProjectionExtension` may
also provide a ``summaries`` static method that can be used to extend the Collection
summaries. This method returns a class inheriting from
:class:`pystac.extensions.base.SummariesExtension` that provides tools for summarizing
the properties defined by that extension. These classes also hold a reference to the
Collection's :class:`pystac.Summaries` instance in the ``summaries`` attribute.
.. code-block:: python
import pystac
from pystac.extensions.projection import ProjectionExtension
# Load a collection that does not implement the Projection extension
collection = pystac.Collection.from_file(
"tests/data-files/examples/1.0.0/collection.json"
)
# Add Projection extension summaries to the collection
proj = ProjectionExtension.summaries(collection, add_if_missing=True)
print(collection.stac_extensions)
# [
# ....,
# 'https://stac-extensions.github.io/projection/v1.1.0/schema.json'
# ]
# Set the values for various extension fields
proj.epsg = [4326]
collection_as_dict = collection.to_dict()
collection_as_dict["summaries"]["proj:epsg"]
# [4326]
Item Asset properties
=====================
Properties that apply to Items can be found in two places: the Item's properties or in
any of an Item's Assets. If the property is on an Asset, it applies only to that specific
asset. For example, gsd defined for an Item represents the best Ground Sample Distance
(resolution) for the data within the Item. However, some assets may be lower resolution
and thus have a higher gsd. In that case, the `gsd` can be found on the Asset.
See the STAC documentation on :stac-spec:`Additional Fields for Assets
<item-spec/item-spec.md#additional-fields-for-assets>` and the relevant :stac-spec:`Best
Practices <best-practices.md#common-use-cases-of-additional-fields-for-assets>` for more
information.
The implementation of this feature in PySTAC uses the method described here and is
consistent across Item and ItemExtensions. The bare property names represent values for
the Item only, but for each property where it is possible to set on both the Item or the
Asset there is a ``get_`` and ``set_`` methods that optionally take an Asset. For the
``get_`` methods, if the property is found on the Asset, the Asset's value is used;
otherwise the Item's value will be used. For the ``set_`` method, if an Asset is passed
in the value will be applied to the Asset and not the Item.
For example, if we have an Item with a ``gsd`` of 10 with three bands, and only asset
"band3" having a ``gsd`` of 20, the ``get_gsd`` method will behave in the following way:
.. code-block:: python
assert item.common_metadata.gsd == 10
assert item.common_metadata.get_gsd() == 10
assert item.common_metadata.get_gsd(item.asset['band1']) == 10
assert item.common_metadata.get_gsd(item.asset['band3']) == 20
Similarly, if we set the asset at 'band2' to have a ``gsd`` of 30, it will only affect
that asset:
.. code-block:: python
item.common_metadata.set_gsd(30, item.assets['band2']
assert item.common_metadata.gsd == 10
assert item.common_metadata.get_gsd(item.asset['band2']) == 30
Manipulating STACs
==================
PySTAC is designed to allow for STACs to be manipulated in-memory. This includes
:ref:`copy stacs`, walking over all objects in a STAC and mutating their properties, or
using collection-style `map` methods for mapping over items.
Walking over a STAC
-------------------
You can walk through all sub-catalogs and items of a catalog with a method inspired
by the Python Standard Library `os.walk()
<https://docs.python.org/3/library/os.html#os.walk>`_ method: :func:`Catalog.walk()
<pystac.Catalog.walk>`:
.. code-block:: python
for root, subcats, items in catalog.walk():
# Root represents a catalog currently being walked in the tree
root.title = '{} has been walked!'.format(root.id)
# subcats represents any catalogs or collections owned by root
for cat in subcats:
cat.title = 'About to be walked!'
# items represent all items that are contained by root
for item in items:
item.title = '{} - owned by {}'.format(item.id, root.id)
Mapping over Items
------------------
The :func:`Catalog.map_items <pystac.Catalog.map_items>` method is useful for
into smaller chunks (e.g. tiling out large image items).
item, you can return multiple items, in case you are generating new objects, or splitting items
manipulating items in a STAC. This will create a full copy of the STAC, so will leave
the original catalog unmodified. In the method that manipulates and returns the modified
.. code-block:: python
def modify_item_title(item):
item.title = 'Some new title'
return item
def duplicate_item(item):
duplicated_item = item.clone()
duplicated_item.id += "-duplicated"
return [item, duplicated_item]
c = catalog.map_items(modify_item_title)
c = c.map_items(duplicate_item)
new_catalog = c
.. _copy stacs:
Copying STACs in-memory
-----------------------
The in-memory copying of STACs to create new ones is crucial to correct manipulations
and mutations of STAC data. The :func:`STACObject.full_copy
<pystac.STACObject.full_copy>` mechanism handles this in a way that ties the elements of
the copies STAC together correctly. This includes situations where there might be cycles
in the graph of connected objects of the STAC (which otherwise would be `a tree
<https://en.wikipedia.org/wiki/Tree_(graph_theory)>`_).
Resolving STAC objects
======================
PySTAC tries to only "resolve" STAC Objects - that is, load the metadata contained by
STAC files pointed to by links into Python objects in-memory - when necessary. It also
ensures that two links that point to the same object resolve to the same in-memory
object.
Lazy resolution of STAC objects
-------------------------------
Links are read only when they need to be. For instance, when you load a catalog using
:func:`Catalog.from_file <pystac.Catalog.from_file>`, the catalog and all of its links
are read into a :class:`~pystac.Catalog` instance. If you iterate through
:attr:`Catalog.links <pystac.Catalog.links>`, you'll see the :attr:`~pystac.Link.target`
of the :class:`~pystac.Link` will refer to a string - that is the HREF of the link.
However, if you call :func:`Catalog.get_items <pystac.Catalog.get_items>`, for instance,
you'll get back the actual :class:`~pystac.Item` instances that are referred to by each
item link in the Catalog. That's because at the time you call ``get_items``, PySTAC is
"resolving" the links for any link that represents an item in the catalog.
The resolution mechanism is accomplished through :func:`Link.resolve_stac_object
<pystac.Link.resolve_stac_object>`. Though this method is used extensively internally to
PySTAC, ideally this is completely transparent to users of PySTAC, and you won't have to
worry about how and when links get resolved. However, one important aspect to understand
is how object resolution caching happens.
Resolution Caching
------------------
The root :class:`~pystac.Catalog` instance of a STAC (the Catalog which is linked to by
every associated object's ``root`` link) contains a cache of resolved objects. This
cache points to in-memory instances of :class:`~pystac.STACObject` s that have already
been resolved through PySTAC crawling links associated with that root catalog. The cache
works off of the stac object's ID, which is why **it is necessary for every STAC object
in the catalog to have a unique identifier, which is unique across the entire STAC**.
When a link is being resolved from a STACObject that has it's root set, that root is
passed into the :func:`Link.resolve_stac_object <pystac.Link.resolve_stac_object>` call.
That root's :class:`~pystac.cache.ResolvedObjectCache` will be used to
ensure that if the link is pointing to an object that has already been resolved, then
that link will point to the same, single instance in the cache. This ensures working
with STAC objects in memory doesn't create a situation where multiple copies of the same
STAC objects are created from different links, manipulated, and written over each other.
Working with STAC JSON
======================
The ``pystac.serialization`` package has some functionality around working directly with
STAC JSON objects, without utilizing PySTAC object types. This is used internally by
PySTAC, but might also be useful to users working directly with JSON (e.g. on
validation).
Identifying STAC objects from JSON
----------------------------------
Users can identify STAC information, including the object type, version and extensions,
from JSON. The main method for this is
:func:`~pystac.serialization.identify_stac_object`, which returns an object that
contains the object type, the range of versions this object is valid for (according to
PySTAC's best guess), the common extensions implemented by this object, and any custom
extensions (represented by URIs to JSON Schemas).
.. code-block:: python
from pystac.serialization import identify_stac_object
json_dict = ...
info = identify_stac_object(json_dict)
# The object type
info.object_type
# The version range
info.version_range
# The common extensions
info.common_extensions
# The custom Extensions
info.custom_extensions
Merging common properties
-------------------------
For pre-1.0.0 STAC, The :func:`~pystac.serialization.merge_common_properties` will take
a JSON dict that represents an item, and if it is associated with a collection, merge in
the collection's properties. You can pass in a dict that contains previously read
collections that caches collections by the HREF of the collection link and/or the
collection ID, which can help avoid multiple reads of
collection links.
Note that this feature was dropped in STAC 1.0.0-beta.1
Geo interface
=============
:class:`~pystac.Item` implements ``__geo_interface__``, a de-facto standard for
describing geospatial objects in Python:
https://gist.github.com/sgillies/2217756. Many packages can automatically use
objects that implement this protocol, e.g. `shapely
<https://shapely.readthedocs.io/en/stable/manual.html>`_:
.. code-block:: python
>>> from pystac import Item
>>> from shapely.geometry import mapping, shape
>>> item = Item.from_file("data-files/item/sample-item.json")
>>> print(shape(item))
POLYGON ((-122.308150179 37.488035566, -122.597502109 37.538869539,
-122.576687533 37.613537207, -122.2880486 37.562818007, -122.308150179
37.488035566))
|