1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
|

---
[](https://badge.fury.io/py/pyswarms)
[](https://dev.azure.com/ljvmiranda/ljvmiranda/_build/latest?definitionId=1&branchName=master)
[](https://pyswarms.readthedocs.io/en/master/?badge=master)
[](https://raw.githubusercontent.com/ljvmiranda921/pyswarms/master/LICENSE)
[](https://doi.org/10.21105/joss.00433)
[](https://github.com/ambv/black)
[](https://gitter.im/pyswarms/Issues)
PySwarms is an extensible research toolkit for particle swarm optimization
(PSO) in Python.
It is intended for swarm intelligence researchers, practitioners, and
students who prefer a high-level declarative interface for implementing PSO
in their problems. PySwarms enables basic optimization with PSO and
interaction with swarm optimizations. Check out more features below!
* **Free software:** MIT license
* **Documentation:** https://pyswarms.readthedocs.io.
* **Python versions:** 3.5 and above
## Features
* High-level module for Particle Swarm Optimization. For a list of all optimizers, check [this link].
* Built-in objective functions to test optimization algorithms.
* Plotting environment for cost histories and particle movement.
* Hyperparameter search tools to optimize swarm behaviour.
* (For Devs and Researchers): Highly-extensible API for implementing your own techniques.
[this link]: https://pyswarms.readthedocs.io/en/latest/features.html
## Installation
To install PySwarms, run this command in your terminal:
```shell
$ pip install pyswarms
```
This is the preferred method to install PySwarms, as it will always install
the most recent stable release.
In case you want to install the bleeding-edge version, clone this repo:
```shell
$ git clone -b development https://github.com/ljvmiranda921/pyswarms.git
```
and then run
```shell
$ cd pyswarms
$ python setup.py install
```
## Running in a Vagrant Box
To run PySwarms in a Vagrant Box, install Vagrant by going to
https://www.vagrantup.com/downloads.html and downloading the proper packaged from the Hashicorp website.
Afterward, run the following command in the project directory:
```shell
$ vagrant provision
$ vagrant up
$ vagrant ssh
```
Now you're ready to develop your contributions in a premade virtual environment.
## Basic Usage
PySwarms provides a high-level implementation of various particle swarm
optimization algorithms. Thus, it aims to be user-friendly and customizable.
In addition, supporting modules can be used to help you in your optimization
problem.
### Optimizing a sphere function
You can import PySwarms as any other Python module,
```python
import pyswarms as ps
```
Suppose we want to find the minima of `f(x) = x^2` using global best
PSO, simply import the built-in sphere function,
`pyswarms.utils.functions.sphere()`, and the necessary optimizer:
```python
import pyswarms as ps
from pyswarms.utils.functions import single_obj as fx
# Set-up hyperparameters
options = {'c1': 0.5, 'c2': 0.3, 'w':0.9}
# Call instance of PSO
optimizer = ps.single.GlobalBestPSO(n_particles=10, dimensions=2, options=options)
# Perform optimization
best_cost, best_pos = optimizer.optimize(fx.sphere, iters=100)
```

This will run the optimizer for `100` iterations, then returns the best cost
and best position found by the swarm. In addition, you can also access
various histories by calling on properties of the class:
```python
# Obtain the cost history
optimizer.cost_history
# Obtain the position history
optimizer.pos_history
# Obtain the velocity history
optimizer.velocity_history
```
At the same time, you can also obtain the mean personal best and mean neighbor
history for local best PSO implementations. Simply call `optimizer.mean_pbest_history`
and `optimizer.mean_neighbor_history` respectively.
### Hyperparameter search tools
PySwarms implements a grid search and random search technique to find the
best parameters for your optimizer. Setting them up is easy. In this example,
let's try using `pyswarms.utils.search.RandomSearch` to find the optimal
parameters for `LocalBestPSO` optimizer.
Here, we input a range, enclosed in tuples, to define the space in which the
parameters will be found. Thus, `(1,5)` pertains to a range from 1 to 5.
```python
import numpy as np
import pyswarms as ps
from pyswarms.utils.search import RandomSearch
from pyswarms.utils.functions import single_obj as fx
# Set-up choices for the parameters
options = {
'c1': (1,5),
'c2': (6,10),
'w': (2,5),
'k': (11, 15),
'p': 1
}
# Create a RandomSearch object
# n_selection_iters is the number of iterations to run the searcher
# iters is the number of iterations to run the optimizer
g = RandomSearch(ps.single.LocalBestPSO, n_particles=40,
dimensions=20, options=options, objective_func=fx.sphere,
iters=10, n_selection_iters=100)
best_score, best_options = g.search()
```
This then returns the best score found during optimization, and the
hyperparameter options that enable it.
```s
>>> best_score
1.41978545901
>>> best_options['c1']
1.543556887693
>>> best_options['c2']
9.504769054771
```
### Swarm visualization
It is also possible to plot optimizer performance for the sake of formatting.
The plotters module is built on top of `matplotlib`, making it
highly-customizable.
```python
import pyswarms as ps
from pyswarms.utils.functions import single_obj as fx
from pyswarms.utils.plotters import plot_cost_history, plot_contour, plot_surface
import matplotlib.pyplot as plt
# Set-up optimizer
options = {'c1':0.5, 'c2':0.3, 'w':0.9}
optimizer = ps.single.GlobalBestPSO(n_particles=50, dimensions=2, options=options)
optimizer.optimize(fx.sphere, iters=100)
# Plot the cost
plot_cost_history(optimizer.cost_history)
plt.show()
```

We can also plot the animation...
```python
from pyswarms.utils.plotters.formatters import Mesher, Designer
# Plot the sphere function's mesh for better plots
m = Mesher(func=fx.sphere,
limits=[(-1,1), (-1,1)])
# Adjust figure limits
d = Designer(limits=[(-1,1), (-1,1), (-0.1,1)],
label=['x-axis', 'y-axis', 'z-axis'])
```
In 2D,
```python
plot_contour(pos_history=optimizer.pos_history, mesher=m, designer=d, mark=(0,0))
```

Or in 3D!
```python
pos_history_3d = m.compute_history_3d(optimizer.pos_history) # preprocessing
animation3d = plot_surface(pos_history=pos_history_3d,
mesher=m, designer=d,
mark=(0,0,0))
```

## Contributing
PySwarms is currently maintained by a small yet dedicated team:
- Lester James V. Miranda ([@ljvmiranda921](https://github.com/ljvmiranda921))
- SiobhΓ‘n K. Cronin ([@SioKCronin](https://github.com/SioKCronin))
- Aaron Moser ([@whzup](https://github.com/whzup))
- Steven Beardwell ([@stevenbw](https://github.com/stevenbw))
And we would appreciate it if you can lend a hand with the following:
* Find bugs and fix them
* Update documentation in docstrings
* Implement new optimizers to our collection
* Make utility functions more robust.
We would also like to acknowledge [all our
contributors](http://pyswarms.readthedocs.io/en/latest/authors.html), past and
present, for making this project successful!
If you wish to contribute, check out our [contributing guide].
Moreover, you can also see the list of features that need some help in our
[Issues] page.
[contributing guide]: https://pyswarms.readthedocs.io/en/development/contributing.html
[Issues]: https://github.com/ljvmiranda921/pyswarms/issues
**Most importantly**, first-time contributors are welcome to join! I try my
best to help you get started and enable you to make your first Pull Request!
Let's learn from each other!
## Credits
This project was inspired by the [pyswarm] module that performs PSO with
constrained support. The package was created with [Cookiecutter] and the
[`audreyr/cookiecutter-pypackage`] project template.
[pyswarm]: https://github.com/tisimst/pyswarm
[Cookiecutter]: https://github.com/audreyr/cookiecutter
[`audreyr/cookiecutter-pypackage`]: https://github.com/audreyr/cookiecutter-pypackage
## Cite us
Are you using PySwarms in your project or research? Please cite us!
* Miranda L.J., (2018). PySwarms: a research toolkit for Particle Swarm Optimization in Python. *Journal of Open Source Software*, 3(21), 433, [https://doi.org/10.21105/joss.00433](https://doi.org/10.21105/joss.00433)
```bibtex
@article{pyswarmsJOSS2018,
author = {Lester James V. Miranda},
title = "{P}y{S}warms, a research-toolkit for {P}article {S}warm {O}ptimization in {P}ython",
journal = {Journal of Open Source Software},
year = {2018},
volume = {3},
issue = {21},
doi = {10.21105/joss.00433},
url = {https://doi.org/10.21105/joss.00433}
}
```
### Projects citing PySwarms
Not on the list? Ping us in the Issue Tracker!
* Gousios, Georgios. Lecture notes for the TU Delft TI3110TU course Algorithms and Data Structures. Accessed May 22, 2018. http://gousios.org/courses/algo-ds/book/string-distance.html#sop-example-using-pyswarms.
* Nandy, Abhishek, and Manisha Biswas., "Applying Python to Reinforcement Learning." *Reinforcement Learning*. Apress, Berkeley, CA, 2018. 89-128.
* Benedetti, Marcello, et al., "A generative modeling approach for benchmarking and training shallow quantum circuits." *arXiv preprint arXiv:1801.07686* (2018).
* VrbanΔiΔ et al., "NiaPy: Python microframework for building nature-inspired algorithms." Journal of Open Source Software, 3(23), 613, https://doi.org/10.21105/joss.00613
* HaΜse, Florian, et al. "Phoenics: A Bayesian optimizer for chemistry." *ACS Central Science.* 4.9 (2018): 1134-1145.
* Szynkiewicz, Pawel. "A Comparative Study of PSO and CMA-ES Algorithms on Black-box Optimization Benchmarks." *Journal of Telecommunications and Information Technology* 4 (2018): 5.
* Mistry, Miten, et al. "Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded." Imperial College London (2018).
* Vishwakarma, Gaurav. *Machine Learning Model Selection for Predicting Properties of High Refractive Index Polymers* Dissertation. State University of New York at Buffalo, 2018.
* Uluturk Ismail, et al. "Efficient 3D Placement of Access Points in an Aerial Wireless Network." *2019 16th IEEE Anual Consumer Communications and Networking Conference (CCNC)* IEEE (2019): 1-7.
* Downey A., Theisen C., et al. "Cam-based passive variable friction device for structural control." *Engineering Structures* Elsevier (2019): 430-439.
* Thaler S., Paehler L., Adams, N.A. "Sparse identification of truncation errors." *Journal of Computational Physics* Elsevier (2019): vol. 397
* Lin, Y.H., He, D., Wang, Y. Lee, L.J. "Last-mile Delivery: Optimal Locker locatuion under Multinomial Logit Choice Model" https://arxiv.org/abs/2002.10153
* Park J., Kim S., Lee, J. "Supplemental Material for Ultimate Light trapping in free-form plasmonic waveguide" KAIST, University of Cambridge, and Cornell University http://www.jlab.or.kr/documents/publications/2019PRApplied_SI.pdf
* Pasha A., Latha P.H., "Bio-inspired dimensionality reduction for Parkinson's Disease Classification," *Health Information Science and Systems*, Springer (2020).
* Carmichael Z., Syed, H., et al. "Analysis of Wide and Deep Echo State Networks for Multiscale Spatiotemporal Time-Series Forecasting," *Proceedings of the 7th Annual Neuro-inspired Computational Elements* ACM (2019), nb. 7: 1-10 https://doi.org/10.1145/3320288.3320303
* Klonowski, J. "Optimizing Message to Virtual Link Assignment in Avionics Full-Duplex Switched Ethernet Networks" Proquest
* Haidar, A., Jan, ZM. "Evolving One-Dimensional Deep Convolutional Neural Netowrk: A Swarm-based Approach," *IEEE Congress on Evolutionary Computation* (2019) https://doi.org/10.1109/CEC.2019.8790036
* Shang, Z. "Performance Evaluation of the Control Plane in OpenFlow Networks," Freie Universitat Berlin (2020)
* Linker, F. "Industrial Benchmark for Fuzzy Particle Swarm Reinforcement Learning," Liezpic University (2020)
* Vetter, A. Yan, C. et al. "Computational rule-based approach for corner correction of non-Manhattan geometries in mask aligner photolithography," Optics (2019). vol. 27, issue 22: 32523-32535 https://doi.org/10.1364/OE.27.032523
* Wang, Q., Megherbi, N., Breckon T.P., "A Reference Architecture for Plausible Thread Image Projection (TIP) Within 3D X-ray Computed Tomography Volumes" https://arxiv.org/abs/2001.05459
* Menke, Tim, Hase, Florian, et al. "Automated discovery of superconducting circuits and its application to 4-local coupler design," arxiv preprint: https://arxiv.org/abs/1912.03322
## Others
Like it? Love it? Leave us a star on [Github] to show your appreciation!
[Github]: https://github.com/ljvmiranda921/pyswarms
## Contributors
Thanks goes to these wonderful people ([emoji key](https://github.com/all-contributors/all-contributors#emoji-key)):
<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section -->
<!-- prettier-ignore-start -->
<!-- markdownlint-disable -->
<table>
<tr>
<td align="center"><a href="https://github.com/whzup"><img src="https://avatars3.githubusercontent.com/u/39431903?v=4" width="100px;" alt=""/><br /><sub><b>Aaron</b></sub></a><br /><a href="#maintenance-whzup" title="Maintenance">π§</a> <a href="https://github.com/ljvmiranda921/pyswarms/commits?author=whzup" title="Code">π»</a> <a href="https://github.com/ljvmiranda921/pyswarms/commits?author=whzup" title="Documentation">π</a> <a href="https://github.com/ljvmiranda921/pyswarms/commits?author=whzup" title="Tests">β οΈ</a> <a href="#ideas-whzup" title="Ideas, Planning, & Feedback">π€</a> <a href="https://github.com/ljvmiranda921/pyswarms/pulls?q=is%3Apr+reviewed-by%3Awhzup" title="Reviewed Pull Requests">π</a></td>
<td align="center"><a href="https://github.com/Carl-K"><img src="https://avatars2.githubusercontent.com/u/13661469?v=4" width="100px;" alt=""/><br /><sub><b>Carl-K</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=Carl-K" title="Code">π»</a> <a href="https://github.com/ljvmiranda921/pyswarms/commits?author=Carl-K" title="Tests">β οΈ</a></td>
<td align="center"><a href="http://www.siobhankcronin.com/"><img src="https://avatars2.githubusercontent.com/u/19956669?v=4" width="100px;" alt=""/><br /><sub><b>SiobhΓ‘n K Cronin</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=SioKCronin" title="Code">π»</a> <a href="#maintenance-SioKCronin" title="Maintenance">π§</a> <a href="#ideas-SioKCronin" title="Ideas, Planning, & Feedback">π€</a></td>
<td align="center"><a href="http://andrewjarcho.com"><img src="https://avatars3.githubusercontent.com/u/1452951?v=4" width="100px;" alt=""/><br /><sub><b>Andrew Jarcho</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=jazcap53" title="Tests">β οΈ</a> <a href="https://github.com/ljvmiranda921/pyswarms/commits?author=jazcap53" title="Code">π»</a></td>
<td align="center"><a href="https://github.com/mamadyonline"><img src="https://avatars1.githubusercontent.com/u/20543370?v=4" width="100px;" alt=""/><br /><sub><b>Mamady</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=mamadyonline" title="Code">π»</a></td>
<td align="center"><a href="https://github.com/jayspeidell"><img src="https://avatars3.githubusercontent.com/u/26357788?v=4" width="100px;" alt=""/><br /><sub><b>Jay Speidell</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=jayspeidell" title="Code">π»</a></td>
<td align="center"><a href="https://github.com/slek120"><img src="https://avatars2.githubusercontent.com/u/3589574?v=4" width="100px;" alt=""/><br /><sub><b>Eric</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/issues?q=author%3Aslek120" title="Bug reports">π</a> <a href="https://github.com/ljvmiranda921/pyswarms/commits?author=slek120" title="Code">π»</a></td>
</tr>
<tr>
<td align="center"><a href="https://github.com/CPapadim"><img src="https://avatars1.githubusercontent.com/u/13984473?v=4" width="100px;" alt=""/><br /><sub><b>CPapadim</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/issues?q=author%3ACPapadim" title="Bug reports">π</a> <a href="https://github.com/ljvmiranda921/pyswarms/commits?author=CPapadim" title="Code">π»</a></td>
<td align="center"><a href="https://github.com/dfhljf"><img src="https://avatars1.githubusercontent.com/u/7887642?v=4" width="100px;" alt=""/><br /><sub><b>JiangHui</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=dfhljf" title="Code">π»</a></td>
<td align="center"><a href="https://github.com/nik1082"><img src="https://avatars3.githubusercontent.com/u/17260188?v=4" width="100px;" alt=""/><br /><sub><b>Jericho Arcelao</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=nik1082" title="Code">π»</a></td>
<td align="center"><a href="http://www.jdbohrman.xyz"><img src="https://avatars2.githubusercontent.com/u/27848025?v=4" width="100px;" alt=""/><br /><sub><b>James D. Bohrman</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=jdbohrman" title="Code">π»</a></td>
<td align="center"><a href="https://github.com/bradahoward"><img src="https://avatars2.githubusercontent.com/u/24660861?v=4" width="100px;" alt=""/><br /><sub><b>bradahoward</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=bradahoward" title="Code">π»</a></td>
<td align="center"><a href="https://github.com/ThomasCES"><img src="https://avatars2.githubusercontent.com/u/18325841?v=4" width="100px;" alt=""/><br /><sub><b>ThomasCES</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=ThomasCES" title="Code">π»</a></td>
<td align="center"><a href="https://github.com/danielcorreia96"><img src="https://avatars0.githubusercontent.com/u/17486065?v=4" width="100px;" alt=""/><br /><sub><b>Daniel Correia</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/issues?q=author%3Adanielcorreia96" title="Bug reports">π</a> <a href="https://github.com/ljvmiranda921/pyswarms/commits?author=danielcorreia96" title="Code">π»</a></td>
</tr>
<tr>
<td align="center"><a href="https://github.com/fluencer"><img src="https://avatars3.githubusercontent.com/u/6614307?v=4" width="100px;" alt=""/><br /><sub><b>fluencer</b></sub></a><br /><a href="#example-fluencer" title="Examples">π‘</a> <a href="https://github.com/ljvmiranda921/pyswarms/commits?author=fluencer" title="Documentation">π</a></td>
<td align="center"><a href="https://github.com/miguelcocruz"><img src="https://avatars0.githubusercontent.com/u/45034603?v=4" width="100px;" alt=""/><br /><sub><b>miguelcocruz</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=miguelcocruz" title="Documentation">π</a> <a href="#example-miguelcocruz" title="Examples">π‘</a></td>
<td align="center"><a href="https://github.com/stevenbw"><img src="https://avatars1.githubusercontent.com/u/46458390?v=4" width="100px;" alt=""/><br /><sub><b>Steven Beardwell</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=stevenbw" title="Code">π»</a> <a href="#maintenance-stevenbw" title="Maintenance">π§</a> <a href="https://github.com/ljvmiranda921/pyswarms/commits?author=stevenbw" title="Documentation">π</a> <a href="#ideas-stevenbw" title="Ideas, Planning, & Feedback">π€</a></td>
<td align="center"><a href="https://github.com/ndngo"><img src="https://avatars1.githubusercontent.com/u/16291290?v=4" width="100px;" alt=""/><br /><sub><b>Nathaniel Ngo</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=ndngo" title="Documentation">π</a></td>
<td align="center"><a href="https://github.com/Aneal-Sharma"><img src="https://avatars1.githubusercontent.com/u/19873846?v=4" width="100px;" alt=""/><br /><sub><b>Aneal Sharma</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=Aneal-Sharma" title="Documentation">π</a></td>
<td align="center"><a href="https://github.com/citomcclure"><img src="https://avatars2.githubusercontent.com/u/38021988?v=4" width="100px;" alt=""/><br /><sub><b>Chris McClure</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=citomcclure" title="Documentation">π</a> <a href="#example-citomcclure" title="Examples">π‘</a></td>
<td align="center"><a href="http://se4.space/"><img src="https://avatars2.githubusercontent.com/u/42605993?v=4" width="100px;" alt=""/><br /><sub><b>Christopher Angell</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=ctangell" title="Documentation">π</a></td>
</tr>
<tr>
<td align="center"><a href="https://github.com/Kutim"><img src="https://avatars3.githubusercontent.com/u/8309533?v=4" width="100px;" alt=""/><br /><sub><b>Kutim</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/issues?q=author%3AKutim" title="Bug reports">π</a></td>
<td align="center"><a href="https://github.com/ichbinjakes"><img src="https://avatars1.githubusercontent.com/u/20906800?v=4" width="100px;" alt=""/><br /><sub><b>Jake Souter</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/issues?q=author%3Aichbinjakes" title="Bug reports">π</a> <a href="https://github.com/ljvmiranda921/pyswarms/commits?author=ichbinjakes" title="Code">π»</a></td>
<td align="center"><a href="https://github.com/IanBoyanZhang"><img src="https://avatars3.githubusercontent.com/u/4110995?v=4" width="100px;" alt=""/><br /><sub><b>Ian Zhang</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=IanBoyanZhang" title="Documentation">π</a> <a href="#example-IanBoyanZhang" title="Examples">π‘</a></td>
<td align="center"><a href="https://www.zachariahcarmichael.com/"><img src="https://avatars2.githubusercontent.com/u/20629897?v=4" width="100px;" alt=""/><br /><sub><b>Zach</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=craymichael" title="Documentation">π</a></td>
<td align="center"><a href="https://www.linkedin.com/in/michel-lavoie-71841526/"><img src="https://avatars3.githubusercontent.com/u/3951483?v=4" width="100px;" alt=""/><br /><sub><b>Michel Lavoie</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/issues?q=author%3Amiek770" title="Bug reports">π</a></td>
<td align="center"><a href="http://linkedin.com/in/ewelinakaminska/"><img src="https://avatars1.githubusercontent.com/u/42674710?v=4" width="100px;" alt=""/><br /><sub><b>ewekam</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=ewekam" title="Documentation">π</a></td>
<td align="center"><a href="https://www.linkedin.com/in/ivyna-alves"><img src="https://avatars2.githubusercontent.com/u/18709508?v=4" width="100px;" alt=""/><br /><sub><b>Ivyna Santino</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=ivynasantino" title="Documentation">π</a> <a href="#example-ivynasantino" title="Examples">π‘</a></td>
</tr>
<tr>
<td align="center"><a href="https://github.com/yasirroni"><img src="https://avatars2.githubusercontent.com/u/48709672?v=4" width="100px;" alt=""/><br /><sub><b>Muhammad Yasirroni</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=yasirroni" title="Documentation">π</a></td>
<td align="center"><a href="https://github.com/ckastner"><img src="https://avatars0.githubusercontent.com/u/15859947?v=4" width="100px;" alt=""/><br /><sub><b>Christian Kastner</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=ckastner" title="Documentation">π</a> <a href="#platform-ckastner" title="Packaging/porting to new platform">π¦</a></td>
<td align="center"><a href="https://github.com/nishnash54"><img src="https://avatars1.githubusercontent.com/u/25393122?v=4" width="100px;" alt=""/><br /><sub><b>Nishant Rodrigues</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=nishnash54" title="Code">π»</a></td>
<td align="center"><a href="https://github.com/msat59"><img src="https://avatars2.githubusercontent.com/u/20813541?v=4" width="100px;" alt=""/><br /><sub><b>msat59</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=msat59" title="Code">π»</a> <a href="https://github.com/ljvmiranda921/pyswarms/issues?q=author%3Amsat59" title="Bug reports">π</a></td>
<td align="center"><a href="https://github.com/diegoroman17"><img src="https://avatars0.githubusercontent.com/u/1294358?v=4" width="100px;" alt=""/><br /><sub><b>Diego</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=diegoroman17" title="Documentation">π</a></td>
<td align="center"><a href="http://www.aquanova-mp.com/"><img src="https://avatars2.githubusercontent.com/u/6449766?v=4" width="100px;" alt=""/><br /><sub><b>Shaad Alaka</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=Archer6621" title="Documentation">π</a></td>
<td align="center"><a href="https://github.com/blazewicz"><img src="https://avatars1.githubusercontent.com/u/13185945?v=4" width="100px;" alt=""/><br /><sub><b>Krzysztof BΕaΕΌewicz</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/issues?q=author%3Ablazewicz" title="Bug reports">π</a></td>
</tr>
<tr>
<td align="center"><a href="https://github.com/a310883"><img src="https://avatars2.githubusercontent.com/u/48936633?v=4" width="100px;" alt=""/><br /><sub><b>Jorge Castillo</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=a310883" title="Documentation">π</a></td>
<td align="center"><a href="https://danner-web.de/"><img src="https://avatars3.githubusercontent.com/u/11915163?v=4" width="100px;" alt=""/><br /><sub><b>Philipp Danner</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=dannerph" title="Code">π»</a></td>
<td align="center"><a href="https://github.com/nikhil-sethi"><img src="https://avatars2.githubusercontent.com/u/50928699?v=4" width="100px;" alt=""/><br /><sub><b>Nikhil Sethi</b></sub></a><br /><a href="https://github.com/ljvmiranda921/pyswarms/commits?author=nikhil-sethi" title="Code">π»</a> <a href="https://github.com/ljvmiranda921/pyswarms/commits?author=nikhil-sethi" title="Documentation">π</a></td>
</tr>
</table>
<!-- markdownlint-enable -->
<!-- prettier-ignore-end -->
<!-- ALL-CONTRIBUTORS-LIST:END -->
This project follows the [all-contributors](https://github.com/all-contributors/all-contributors) specification. Contributions of any kind welcome!
|