1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
"""Plugin for HDF5 files created with using pytables (tables.netcdf3)"""
__author__ = "Jeffrey Whitaker <jeffrey.s.whitaker@noaa.gov>"
from __future__ import division
import os.path
import re
import types
# Requires tables.netcdf3
from tables.netcdf3 import NetCDFFile
from dap import dtypes
from dap.server import BaseHandler
from dap.exceptions import ConstraintExpressionError, OpenFileError
from dap.util.arrayterator import arrayterator
from dap.helper import getslice, typecode_to_dap
extensions = r"""^.*\.(h5|hdf5|H5|HDF5)$"""
BUFFER = 10000 # how many values to read at a time.
def get_attributes(var):
attributes = {}
attrs = [attr for attr in var.ncattrs()]
for attr in attrs:
value = getattr(var, attr)
if hasattr(value, 'tolist'): value = value.tolist()
attributes[attr] = value
return attributes
class Handler(BaseHandler):
def __init__(self, filepath):
dir, self.filename = os.path.split(filepath)
try:
self._file = NetCDFFile(filepath)
except:
raise OpenFileError, 'Unable to open file %s.' % filepath
def _parseconstraints(self, constraints=None):
# Build the dataset.
dataset = dtypes.DatasetType(name=self.filename)
# Add attributes.
dataset.attributes = get_attributes(self._file)
grids = [g for g in self._file.variables if g not in self._file.dimensions]
if not constraints:
# Build the grids.
for name in grids:
# Instantiate the grid.
grid = self._file.variables[name]
data = arrayterator(grid, nrecs=BUFFER)
g = dataset[name] = dtypes.GridType(data=data,
name=name,
dimensions=grid.dimensions,
shape=grid.shape,
type=typecode_to_dap[grid.typecode()],
attributes=get_attributes(grid))
# Build maps.
for mapname,shape in zip(g.dimensions, g.shape):
if mapname in self._file.variables:
map_ = self._file.variables[mapname]
data = arrayterator(map_, nrecs=BUFFER)
dataset[mapname] = g.maps[mapname] = dtypes.ArrayType(data=data,
name=mapname,
shape=map_.shape,
type=typecode_to_dap[map_.typecode()],
attributes=get_attributes(map_))
else:
# Some NetCDF files have dimensions without values?!
dataset[mapname] = g.maps[mapname] = dtypes.ArrayType(data=range(shape),
name=mapname,
shape=[shape],
type='Int32',
attributes={})
# Leftover arrays.
arrays = [a for a in self._file.variables if a not in dataset.keys()]
for name in arrays:
array_ = self._file.variables[name]
data = arrayterator(array_, nrecs=BUFFER)
dataset[name] = dtypes.ArrayType(data=data,
name=name,
shape=array_.shape,
type=typecode_to_dap[array_.typecode()],
attributes=get_attributes(array_))
else:
vars = constraints.split(',')
for var in vars:
p = re.compile(r'(?P<name>[^[]+)(?P<shape>(\[[^\]]+\])*)')
c = p.match(var).groupdict()
name = c['name']
#if name not in self._file.variables and name not in self._file.dimensions:
# raise ConstraintExpressionError, 'Variable %s not in dataset.' % name
# Check if var is grid or array.
if name not in self._file.dimensions and '.' not in name:
grid = self._file.variables[name]
slice_ = getslice(c['shape'], grid.shape)
start = [i.start for i in slice_]
stride = [i.step for i in slice_]
shape = [(i.stop - i.start) for i in slice_]
# Build grid.
data = arrayterator(grid, start=start, shape=shape, stride=stride, nrecs=BUFFER)
g = dataset[name] = dtypes.GridType(data=data,
name=name,
dimensions=grid.dimensions,
shape=shape,
type=typecode_to_dap[grid.typecode()],
attributes=get_attributes(grid))
# Build maps.
dimmap = zip(g.dimensions, start, shape, stride)
for mapname,start_,shape_,stride_ in dimmap:
if mapname in self._file.variables:
map_ = self._file.variables[mapname]
data = arrayterator(map_, start=[start_], shape=[shape_], stride=[stride_], nrecs=BUFFER)
g.maps[mapname] = dtypes.ArrayType(data=data,
name=mapname,
shape=[shape_],
type=typecode_to_dap[map_.typecode()],
attributes=get_attributes(map_))
else:
# Some NetCDF files have dimensions without values?!
g.maps[mapname] = dtypes.ArrayType(data=range(shape_),
name=mapname,
shape=[shape_],
type='Int32',
attributes={})
else:
# Build array.
if '.' in name:
try:
grid, name = name.split('.')
assert grid in grids
assert name in self._file.variables[grid].dimensions or name == grid
except:
raise ConstraintExpressionError, 'Invalid name in constraint expression: %s.' % c['name']
array_ = self._file.variables[name]
slice_ = getslice(c['shape'], array_.shape)
start = [i.start for i in slice_]
stride = [i.step for i in slice_]
shape = [(i.stop - i.start) for i in slice_]
data = arrayterator(array_, start=start, shape=shape, stride=stride, nrecs=BUFFER)
if not grid in dataset.keys():
structure = dataset[grid] = dtypes.StructureType(name=grid)
structure[name] = dtypes.ArrayType(data=data,
name=name,
shape=shape,
type=typecode_to_dap[array_.typecode()],
attributes=get_attributes(array_))
else:
if name in self._file.variables:
array_ = self._file.variables[name]
slice_ = getslice(c['shape'], array_.shape)
start = [i.start for i in slice_]
stride = [i.step for i in slice_]
shape = [(i.stop - i.start) for i in slice_]
data = arrayterator(array_, start=start, shape=shape, stride=stride, nrecs=BUFFER)
dataset[name] = dtypes.ArrayType(data=data,
name=name,
shape=shape,
type=typecode_to_dap[array_.typecode()],
attributes=get_attributes(array_))
elif name in self._file.dimensions:
# Some NetCDF files have dimensions without values.
shape = self._file.dimensions[name]
dataset[name] = dtypes.ArrayType(data=range(shape),
name=name,
shape=[shape],
type='Int32',
attributes={})
return dataset
def close(self):
self._file.close()
|