File: hdf5Extension.pyx

package info (click to toggle)
pytables 2.3.1-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 14,624 kB
  • sloc: python: 55,641; xml: 15,737; ansic: 5,805; sh: 460; makefile: 234
file content (1613 lines) | stat: -rw-r--r-- 51,618 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
########################################################################
#
#       License: BSD
#       Created: September 21, 2002
#       Author:  Francesc Alted - faltet@pytables.com
#
#       $Id$
#
########################################################################

"""Pyrex interface between several PyTables classes and HDF5 library.

Classes (type extensions):

    File
    AttributeSet
    Node
    Leaf
    Group
    Array
    VLArray
    UnImplemented

Functions:

Misc variables:

    __version__
"""

import sys
import os
import warnings
import cPickle

import numpy

from tables.misc.enum import Enum
from tables.exceptions import HDF5ExtError, DataTypeWarning

from tables.utils import \
     checkFileAccess, byteorders, correct_byteorder, SizeType

from tables.atom import Atom

from tables.description import descr_from_dtype, Description

from tables.utilsExtension import \
     enumToHDF5, enumFromHDF5, getTypeEnum, \
     encode_filename, isHDF5File, isPyTablesFile, \
     AtomToHDF5Type, AtomFromHDF5Type, loadEnum, \
     HDF5ToNPExtType, HDF5ToNPNestedType, createNestedType, \
     setBloscMaxThreads


from utilsExtension cimport malloc_dims, get_native_type


# Types, constants, functions, classes & other objects from everywhere
from definitions cimport  \
     memcpy, strdup, malloc, free, \
     Py_ssize_t, PyObject_AsReadBuffer, \
     Py_BEGIN_ALLOW_THREADS, Py_END_ALLOW_THREADS, PyString_AsString, \
     PyString_FromStringAndSize, PyDict_Contains, PyDict_GetItem, \
     Py_INCREF, Py_DECREF, \
     import_array, ndarray, dtype, \
     time_t, size_t, uintptr_t, hid_t, herr_t, hsize_t, hvl_t, \
     H5S_seloper_t, H5D_FILL_VALUE_UNDEFINED, \
     H5G_UNKNOWN, H5G_GROUP, H5G_DATASET, H5G_LINK, H5G_TYPE, \
     H5T_class_t, H5T_sign_t, H5T_NATIVE_INT, \
     H5F_SCOPE_GLOBAL, H5F_ACC_TRUNC, H5F_ACC_RDONLY, H5F_ACC_RDWR, \
     H5P_DEFAULT, H5P_FILE_ACCESS, \
     H5T_SGN_NONE, H5T_SGN_2, H5T_DIR_DEFAULT, \
     H5S_SELECT_SET, H5S_SELECT_AND, H5S_SELECT_NOTB, \
     H5get_libversion, H5check_version, H5Fcreate, H5Fopen, H5Fclose, \
     H5Fflush, H5Fget_vfd_handle, \
     H5Gcreate, H5Gopen, H5Gclose, H5Gunlink, H5Gmove, H5Gmove2, \
     H5Dopen, H5Dclose, H5Dread, H5Dwrite, H5Dget_type, \
     H5Dget_space, H5Dvlen_reclaim, \
     H5Tget_native_type, H5Tget_super, H5Tget_class, H5Tcopy, \
     H5Tclose, H5Tis_variable_str, H5Tget_sign, \
     H5Adelete, H5Aget_num_attrs, H5Aget_name, H5Aopen_idx, \
     H5Aread, H5Aclose, H5Pcreate, H5Pclose, \
     H5Pset_cache, H5Pset_sieve_buf_size, H5Pset_fapl_log, \
     H5Pset_fapl_core, \
     H5Sselect_all, H5Sselect_elements, H5Sselect_hyperslab, \
     H5Screate_simple, H5Sget_simple_extent_ndims, \
     H5Sget_simple_extent_dims, H5Sclose, \
     H5ATTRset_attribute, H5ATTRset_attribute_string, \
     H5ATTRget_attribute, H5ATTRget_attribute_string, \
     H5ATTRfind_attribute, H5ATTRget_type_ndims, H5ATTRget_dims, \
     H5ARRAYget_ndims, H5ARRAYget_info, \
     set_cache_size, get_objinfo, Giterate, Aiterate, H5UIget_info, \
     get_len_of_range, get_order, set_order, is_complex, \
     conv_float64_timeval32, truncate_dset


# Include conversion tables
include "convtypetables.pxi"


__version__ = "$Revision$"


#-------------------------------------------------------------------

# Functions from HDF5 ARRAY (this is not part of HDF5 HL; it's private)
cdef extern from "H5ARRAY.h":

  herr_t H5ARRAYmake(hid_t loc_id, char *dset_name, char *obversion,
                     int rank, hsize_t *dims, int extdim,
                     hid_t type_id, hsize_t *dims_chunk, void *fill_data,
                     int complevel, char  *complib, int shuffle,
                     int fletcher32, void *data)

  herr_t H5ARRAYappend_records(hid_t dataset_id, hid_t type_id,
                               int rank, hsize_t *dims_orig,
                               hsize_t *dims_new, int extdim, void *data )

  herr_t H5ARRAYwrite_records(hid_t dataset_id, hid_t type_id,
                              int rank, hsize_t *start, hsize_t *step,
                              hsize_t *count, void *data)

  herr_t H5ARRAYread(hid_t dataset_id, hid_t type_id,
                     hsize_t start, hsize_t nrows, hsize_t step,
                     int extdim, void *data)

  herr_t H5ARRAYreadSlice(hid_t dataset_id, hid_t type_id,
                          hsize_t *start, hsize_t *stop,
                          hsize_t *step, void *data)

  herr_t H5ARRAYreadIndex(hid_t dataset_id, hid_t type_id, int notequal,
                          hsize_t *start, hsize_t *stop, hsize_t *step,
                          void *data)

  herr_t H5ARRAYget_chunkshape(hid_t dataset_id, int rank, hsize_t *dims_chunk)

  herr_t H5ARRAYget_fill_value( hid_t dataset_id, hid_t type_id,
                                int *status, void *value)


# Functions for dealing with VLArray objects
cdef extern from "H5VLARRAY.h":

  herr_t H5VLARRAYmake( hid_t loc_id, char *dset_name, char *obversion,
                        int rank, hsize_t *dims, hid_t type_id,
                        hsize_t chunk_size, void *fill_data, int complevel,
                        char *complib, int shuffle, int flecther32,
                        void *data)

  herr_t H5VLARRAYappend_records( hid_t dataset_id, hid_t type_id,
                                  int nobjects, hsize_t nrecords,
                                  void *data )

  herr_t H5VLARRAYmodify_records( hid_t dataset_id, hid_t type_id,
                                  hsize_t nrow, int nobjects,
                                  void *data )

  herr_t H5VLARRAYget_info( hid_t dataset_id, hid_t type_id,
                            hsize_t *nrecords, char *base_byteorder)



#----------------------------------------------------------------------------

# Initialization code

# The numpy API requires this function to be called before
# using any numpy facilities in an extension module.
import_array()

#---------------------------------------------------------------------------

# Helper functions

cdef hsize_t *npy_malloc_dims(int rank, npy_intp *pdims):
  """Returns a malloced hsize_t dims from a npy_intp *pdims."""
  cdef int i
  cdef hsize_t *dims

  dims = NULL
  if rank > 0:
    dims = <hsize_t *>malloc(rank * sizeof(hsize_t))
    for i from 0 <= i < rank:
      dims[i] = pdims[i]
  return dims


cdef object getshape(int rank, hsize_t *dims):
  """Return a shape (tuple) from a dims C array of rank dimensions."""
  cdef int i
  cdef object shape

  shape = []
  for i from 0 <= i < rank:
    shape.append(SizeType(dims[i]))

  return tuple(shape)


# Helper function for quickly fetch an attribute string
cdef object get_attribute_string_or_none(node_id, attr_name):
  """Returns a string attribute if it exists in node_id.

  It returns ``None`` in case it don't exists (or there have been problems
  reading it).
  """

  cdef char *attr_value
  cdef object retvalue

  attr_value = NULL
  retvalue = None   # Default value
  if H5ATTRfind_attribute(node_id, attr_name):
    ret = H5ATTRget_attribute_string(node_id, attr_name, &attr_value)
    if ret < 0:
      return None
    retvalue = numpy.string_(attr_value)
    # Important to release attr_value, because it has been malloc'ed!
    if attr_value:
      free(<void *>attr_value)

  return retvalue


# Get the numpy dtype scalar attribute from an HDF5 type as fast as possible
cdef object get_dtype_scalar(hid_t type_id, H5T_class_t class_id,
                             size_t itemsize):
  cdef H5T_sign_t sign
  cdef object stype

  if class_id == H5T_BITFIELD:
    stype = "b1"
  elif class_id ==  H5T_INTEGER:
    # Get the sign
    sign = H5Tget_sign(type_id)
    if (sign > 0):
      stype = "i%s" % (itemsize)
    else:
      stype = "u%s" % (itemsize)
  elif class_id ==  H5T_FLOAT:
    stype = "f%s" % (itemsize)
  elif class_id ==  H5T_STRING:
    if H5Tis_variable_str(type_id):
      raise TypeError("variable length strings are not supported yet")
    stype = "S%s" % (itemsize)

  # Try to get a NumPy type.  If this can't be done, return None.
  try:
    ntype = numpy.dtype(stype)
  except TypeError:
    ntype = None
  return ntype



# Type extensions declarations (these are subclassed by PyTables
# Python classes)

cdef class File:
  cdef hid_t   file_id
  cdef hid_t   access_plist
  cdef object  name


  def _g_new(self, name, pymode, **params):
    # Create a new file using default properties
    self.name = name

    # Encode the filename in case it is unicode
    encname = encode_filename(name)

    # These fields can be seen from Python.
    self._v_new = None  # this will be computed later
    # """Is this file going to be created from scratch?"""
    self._isPTFile = True  # assume a PyTables file by default
    # """Does this HDF5 file have a PyTables format?"""

    # After the following check we can be quite sure
    # that the file or directory exists and permissions are right.
    checkFileAccess(name, pymode)

    assert pymode in ('r', 'r+', 'a', 'w'), \
           "an invalid mode string ``%s`` " \
           "passed the ``checkFileAccess()`` test; " \
           "please report this to the authors" % pymode

    # Should a new file be created?
    exists = os.path.exists(name)
    self._v_new = new = not (
      pymode in ('r', 'r+') or (pymode == 'a' and exists))

    access_plist = H5Pcreate(H5P_FILE_ACCESS)
    # The line below uses the CORE driver for doing I/O from memory, not disk
    # In general it is a bad idea to do this because HDF5 will have to load
    # the contents of the file on disk prior to operate, which takes time and
    # resources.
    # F. Alted 2010-04-15
    #H5Pset_fapl_core(access_plist, 1024, 1)
    # Set parameters for chunk cache
    H5Pset_cache(access_plist, 0,
                 params['CHUNK_CACHE_NELMTS'],
                 params['CHUNK_CACHE_SIZE'],
                 params['CHUNK_CACHE_PREEMPT'])

    if pymode == 'r':
      self.file_id = H5Fopen(encname, H5F_ACC_RDONLY, access_plist)
    elif pymode == 'r+':
      self.file_id = H5Fopen(encname, H5F_ACC_RDWR, access_plist)
    elif pymode == 'a':
      if exists:
        # A test for logging.
        ## H5Pset_sieve_buf_size(access_plist, 0)
        ## H5Pset_fapl_log (access_plist, "test.log", H5FD_LOG_LOC_WRITE, 0)
        self.file_id = H5Fopen(encname, H5F_ACC_RDWR, access_plist)
      else:
        self.file_id = H5Fcreate(encname, H5F_ACC_TRUNC,
                                 H5P_DEFAULT, access_plist)
    elif pymode == 'w':
      self.file_id = H5Fcreate(encname, H5F_ACC_TRUNC,
                               H5P_DEFAULT, access_plist)

    # Set the cache size (only for HDF5 1.8.x)
    set_cache_size(self.file_id, params['METADATA_CACHE_SIZE'])

    # Set the maximum number of threads for Blosc
    setBloscMaxThreads(params['MAX_THREADS'])


  # Accessor definitions
  def _getFileId(self):
    return self.file_id


  def fileno(self):
    """Return the underlying OS integer file descriptor.

    This is needed for lower-level file interfaces, such as the ``fcntl``
    module.
    """

    cdef void *file_handle
    cdef uintptr_t *descriptor
    cdef herr_t err
    err = H5Fget_vfd_handle(self.file_id, H5P_DEFAULT, &file_handle)
    if err < 0:
      raise HDF5ExtError(
        "Problems getting file descriptor for file ``%s``", self.name)
    # Convert the 'void *file_handle' into an 'int *descriptor'
    descriptor = <uintptr_t *>file_handle
    return descriptor[0]


  def _flushFile(self, scope):
    # Close the file
    H5Fflush(self.file_id, scope)


  def _closeFile(self):
    # Close the file
    H5Fclose( self.file_id )
    self.file_id = 0    # Means file closed


  # This method is moved out of scope, until we provide code to delete
  # the memory booked by this extension types
  def __dealloc__(self):
    cdef int ret
    if self.file_id:
      # Close the HDF5 file because user didn't do that!
      ret = H5Fclose(self.file_id)
      if ret < 0:
        raise HDF5ExtError("Problems closing the file '%s'" % self.name)



cdef class AttributeSet:
  cdef char    *name


  def _g_new(self, node):
    # Initialize the C attributes of Node object
    self.name =  PyString_AsString(node._v_name)


  def _g_listAttr(self, node):
    "Return a tuple with the attribute list"
    a = Aiterate(node._v_objectID)
    return a


  def _g_setAttr(self, node, char *name, object value):
    """Save Python or NumPy objects as HDF5 attributes.

    Scalar Python objects, scalar NumPy & 0-dim NumPy objects will all be
    saved as H5T_SCALAR type.  N-dim NumPy objects will be saved as H5T_ARRAY
    type.
    """

    cdef int ret
    cdef hid_t dset_id, type_id
    cdef hsize_t *dims
    cdef ndarray ndv
    cdef object byteorder, rabyteorder, baseatom

    # The dataset id of the node
    dset_id = node._v_objectID

    # Convert a NumPy scalar into a NumPy 0-dim ndarray
    if isinstance(value, numpy.generic):
      value = numpy.array(value)

    # Check if value is a NumPy ndarray and of a supported type
    if (isinstance(value, numpy.ndarray) and
        value.dtype.kind in ('V', 'S', 'b', 'i', 'u', 'f', 'c')):
      value = numpy.array(value)  # to get a contiguous array.  Fixes #270.
      if value.dtype.kind == 'V':
        description, rabyteorder = descr_from_dtype(value.dtype)
        byteorder = byteorders[rabyteorder]
        type_id = createNestedType(description, byteorder)
      else:
        # Get the associated native HDF5 type of the scalar type
        baseatom = Atom.from_dtype(value.dtype.base)
        byteorder = byteorders[value.dtype.byteorder]
        type_id = AtomToHDF5Type(baseatom, byteorder)
      # Get dimensionality info
      ndv = <ndarray>value
      dims = npy_malloc_dims(ndv.nd, ndv.dimensions)
      # Actually write the attribute
      ret = H5ATTRset_attribute(dset_id, name, type_id,
                                ndv.nd, dims, ndv.data)
      if ret < 0:
        raise HDF5ExtError("Can't set attribute '%s' in node:\n %s." %
                           (name, self._v_node))
      # Release resources
      free(<void *>dims)
      H5Tclose(type_id)
    else:
      # Object cannot be natively represented in HDF5.
      # Unicode attributes has to be pickled until we can definitely switch
      # to HDF5 1.8.x, where Unicode datatype is supported natively.
      if (isinstance(value, numpy.ndarray) and
          value.dtype.kind == 'U' and
          value.shape == ()):
        value = value[()]
      # Convert this object to a null-terminated string
      # (binary pickles are not supported at this moment)
      value = cPickle.dumps(value, 0)
      ret = H5ATTRset_attribute_string(dset_id, name, value)

    return


  # Get attributes
  def _g_getAttr(self, node, char *attrname):
    """Get HDF5 attributes and retrieve them as NumPy objects.

    H5T_SCALAR types will be retrieved as scalar NumPy.
    H5T_ARRAY types will be retrieved as ndarray NumPy objects.
    """

    cdef hsize_t *dims, nelements
    cdef H5T_class_t class_id
    cdef size_t type_size
    cdef hid_t mem_type, dset_id, type_id, native_type
    cdef int rank, ret, enumtype
    cdef void *rbuf
    cdef char *str_value
    cdef ndarray ndvalue
    cdef object shape, stype_atom, shape_atom, retvalue

    # The dataset id of the node
    dset_id = node._v_objectID
    dims = NULL

    ret = H5ATTRget_type_ndims(dset_id, attrname, &type_id, &class_id,
                               &type_size, &rank )
    if ret < 0:
      raise HDF5ExtError("Can't get type info on attribute %s in node %s." %
                         (attrname, self.name))

    # Call a fast function for scalar values and typical class types
    if (rank == 0 and class_id == H5T_STRING):
      ret = H5ATTRget_attribute_string(dset_id, attrname, &str_value)
      retvalue = numpy.string_(str_value)
      # Important to release attr_value, because it has been malloc'ed!
      if str_value: free(str_value)
      H5Tclose(type_id)
      return retvalue
    elif (rank == 0 and class_id in (H5T_BITFIELD, H5T_INTEGER, H5T_FLOAT)):
      dtype = get_dtype_scalar(type_id, class_id, type_size)
      if dtype is None:
        warnings.warn("""\
Unsupported type for attribute '%s' in node '%s'. Offending HDF5 class: %d"""
                      % (attrname, self.name, class_id), DataTypeWarning)
        self._v_unimplemented.append(attrname)
        return None
      shape = ()
    else:
      # General case

      # Get the NumPy dtype from the type_id
      try:
        stype_, shape_ = HDF5ToNPExtType(type_id, pure_numpy_types=True)
        dtype = numpy.dtype(stype_, shape_)
      except TypeError:
        # This class is not supported. Instead of raising a TypeError, issue a
        # warning explaining the problem. This will allow to continue browsing
        # native HDF5 files, while informing the user about the problem.
        warnings.warn("""\
Unsupported type for attribute '%s' in node '%s'. Offending HDF5 class: %d"""
                      % (attrname, self.name, class_id), DataTypeWarning)
        self._v_unimplemented.append(attrname)
        return None

      # Get the dimensional info
      dims = <hsize_t *>malloc(rank * sizeof(hsize_t))
      ret = H5ATTRget_dims(dset_id, attrname, dims)
      if ret < 0:
        raise HDF5ExtError("Can't get dims info on attribute %s in node %s." %
                           (attrname, self.name))
      shape = getshape(rank, dims)
      # dims is not needed anymore
      free(<void *> dims)

    # Get the native type (so that it is HDF5 who is the responsible to deal
    # with non-native byteorders on-disk)
    native_type_id = get_native_type(type_id)

    # Get the container for data
    ndvalue = numpy.empty(dtype=dtype, shape=shape)
    # Get the pointer to the buffer data area
    rbuf = ndvalue.data
    # Actually read the attribute from disk
    ret = H5ATTRget_attribute(dset_id, attrname, native_type_id, rbuf)
    if ret < 0:
      raise HDF5ExtError("Attribute %s exists in node %s, but can't get it."\
                         % (attrname, self.name))
    H5Tclose(native_type_id)
    H5Tclose(type_id)

    if rank > 0:    # multidimensional case
      retvalue = ndvalue
    else:
      retvalue = ndvalue[()]   # 0-dim ndarray becomes a NumPy scalar

    return retvalue


  def _g_remove(self, node, attrname):
    cdef int ret
    cdef hid_t dset_id

    # The dataset id of the node
    dset_id = node._v_objectID

    ret = H5Adelete(dset_id, attrname)
    if ret < 0:
      raise HDF5ExtError("Attribute '%s' exists in node '%s', but cannot be deleted." \
                         % (attrname, self.name))




cdef class Node:
  # Instance variables declared in .pxd


  def _g_new(self, where, name, init):
    self.name = strdup(name)
    # """The name of this node in its parent group."""
    self.parent_id = where._v_objectID
    # """The identifier of the parent group."""


  def _g_delete(self, parent):
    cdef int ret

    # Delete this node
    ret = H5Gunlink(parent._v_objectID, self.name)
    if ret < 0:
      raise HDF5ExtError("problems deleting the node ``%s``" % self.name)
    return ret


  def __dealloc__(self):
    free(<void *>self.name)
    self.parent_id = 0



cdef class Group(Node):
  cdef hid_t   group_id


  def _g_create(self):
    cdef hid_t ret

    # Create a new group
    ret = H5Gcreate(self.parent_id, self.name, 0)
    if ret < 0:
      raise HDF5ExtError("Can't create the group %s." % self.name)
    self.group_id = ret
    return self.group_id


  def _g_open(self):
    cdef hid_t ret

    ret = H5Gopen(self.parent_id, self.name)
    if ret < 0:
      raise HDF5ExtError("Can't open the group: '%s'." % self.name)
    self.group_id = ret
    return self.group_id


  def _g_get_objinfo(self, object h5name):
    """Check whether 'name' is a children of 'self' and return its type. """
    cdef int ret
    cdef object node_type

    ret = get_objinfo(self.group_id, h5name)
    if ret == -2:
      node_type = "NoSuchNode"
    elif ret == H5G_UNKNOWN:
      node_type = "Unknown"
    elif ret == H5G_GROUP:
      node_type = "Group"
    elif ret == H5G_DATASET:
      node_type = "Leaf"
    elif ret == H5G_LINK:
      node_type = "SoftLink"
    elif ret == H5G_TYPE:
      node_type = "NamedType"              # Not supported yet
    else:
      node_type = "ExternalLink"
    return node_type


  def _g_listGroup(self, parent):
    """Return a tuple with the groups and the leaves hanging from self."""
    return Giterate(parent._v_objectID, self._v_objectID, self.name)


  def _g_getGChildAttr(self, char *group_name, char *attr_name):
    """
    Return an attribute of a child `Group`.

    If the attribute does not exist, ``None`` is returned.
    """

    cdef hid_t gchild_id
    cdef object retvalue

    # Open the group
    retvalue = None  # Default value
    gchild_id = H5Gopen(self.group_id, group_name)
    if gchild_id < 0:
      raise HDF5ExtError("Non-existing node ``%s`` under ``%s``" % \
                         (group_name, self._v_pathname))
    retvalue = get_attribute_string_or_none(gchild_id, attr_name)
    # Close child group
    H5Gclose(gchild_id)

    return retvalue


  def _g_getLChildAttr(self, char *leaf_name, char *attr_name):
    """
    Return an attribute of a child `Leaf`.

    If the attribute does not exist, ``None`` is returned.
    """

    cdef hid_t leaf_id
    cdef object retvalue

    # Open the dataset
    leaf_id = H5Dopen(self.group_id, leaf_name)
    if leaf_id < 0:
      raise HDF5ExtError("Non-existing node ``%s`` under ``%s``" % \
                         (leaf_name, self._v_pathname))
    retvalue = get_attribute_string_or_none(leaf_id, attr_name)
    # Close the dataset
    H5Dclose(leaf_id)
    return retvalue


  def _g_flushGroup(self):
    # Close the group
    H5Fflush(self.group_id, H5F_SCOPE_GLOBAL)


  def _g_closeGroup(self):
    cdef int ret

    ret = H5Gclose(self.group_id)
    if ret < 0:
      raise HDF5ExtError("Problems closing the Group %s" % self.name )
    self.group_id = 0  # indicate that this group is closed


  def _g_moveNode(self, hid_t oldparent, char *oldname,
                  hid_t newparent, char *newname,
                  char *oldpathname, char *newpathname):
    cdef int ret

    ret = H5Gmove2(oldparent, oldname, newparent, newname)
    if ret < 0:
      raise HDF5ExtError("Problems moving the node %s to %s" %
                         (oldpathname, newpathname) )
    return ret



cdef class Leaf(Node):
  # Instance variables declared in .pxd

  def _g_new(self, where, name, init):
    if init:
      # Put this info to 0 just when the class is initialized
      self.dataset_id = -1
      self.type_id = -1
      self.base_type_id = -1
      self.disk_type_id = -1
    super(Leaf, self)._g_new(where, name, init)


  cdef _get_type_ids(self):
    """Get the disk and native HDF5 types associated with this leaf.

    It is guaranteed that both disk and native types are not the same
    descriptor (so that it is safe to close them separately).
    """
    cdef hid_t disk_type_id, native_type_id

    disk_type_id = H5Dget_type(self.dataset_id)
    native_type_id = get_native_type(disk_type_id)
    return (disk_type_id, native_type_id)


  cdef _convertTime64(self, ndarray nparr, int sense):
    """Converts a NumPy of Time64 elements between NumPy and HDF5 formats.

    NumPy to HDF5 conversion is performed when 'sense' is 0.  Otherwise, HDF5
    to NumPy conversion is performed.  The conversion is done in place,
    i.e. 'nparr' is modified.
    """

    cdef void *t64buf
    cdef long byteoffset, bytestride, nelements
    cdef hsize_t nrecords

    byteoffset = 0   # NumPy objects doesn't have an offset
    if nparr.shape == ():
      # 0-dim array does contain *one* element
      nrecords = 1
      bytestride = 8
    else:
      nrecords = len(nparr)
      bytestride = nparr.strides[0]  # supports multi-dimensional recarray
    nelements = nparr.size / nrecords
    t64buf = nparr.data

    conv_float64_timeval32(
      t64buf, byteoffset, bytestride, nrecords, nelements, sense)


  def _g_truncate(self, hsize_t size):
    """Truncate a Leaf to `size` nrows."""
    cdef hsize_t ret

    ret = truncate_dset(self.dataset_id, self.maindim, size)
    if ret < 0:
      raise HDF5ExtError("Problems truncating the leaf: %s" % self)

    classname = self.__class__.__name__
    if classname in ('EArray', 'CArray'):
      # Update the new dimensionality
      self.dims[self.maindim] = size
      # Update the shape
      shape = list(self.shape)
      shape[self.maindim] = SizeType(size)
      self.shape = tuple(shape)
    elif classname in ('Table', 'VLArray'):
      self.nrows = size
    else:
      raise ValueError, "Unexpected classname:", classname


  def _g_flush(self):
    # Flush the dataset (in fact, the entire buffers in file!)
    if self.dataset_id >= 0:
        H5Fflush(self.dataset_id, H5F_SCOPE_GLOBAL)


  def _g_close(self):
    # Close dataset in HDF5 space
    # Release resources
    if self.type_id >= 0:
      H5Tclose(self.type_id)
    if self.disk_type_id >= 0:
      H5Tclose(self.disk_type_id)
    if self.base_type_id >= 0:
      H5Tclose(self.base_type_id)
    if self.dataset_id >= 0:
      H5Dclose(self.dataset_id)



cdef class Array(Leaf):
  # Instance variables declared in .pxd


  def _createArray(self, ndarray nparr, char *title, object _atom):
    cdef int i
    cdef herr_t ret
    cdef void *rbuf
    cdef char *complib, *version, *class_
    cdef object dtype, atom, shape
    cdef ndarray dims

    # Get the HDF5 type associated with this numpy type
    shape = nparr.shape
    if _atom is None or _atom.shape == ():
      dtype = nparr.dtype.base
      atom = Atom.from_dtype(dtype)
    else:
      atom = _atom
      shape = shape[:-len(atom.shape)]
    self.disk_type_id = AtomToHDF5Type(atom, self.byteorder)

    # Allocate space for the dimension axis info and fill it
    dims = numpy.array(shape, dtype=numpy.intp)
    self.rank = len(shape)
    self.dims = npy_malloc_dims(self.rank, <npy_intp *>(dims.data))
    # Get the pointer to the buffer data area
    rbuf = nparr.data
    # Save the array
    complib = PyString_AsString(self.filters.complib or '')
    version = PyString_AsString(self._v_version)
    class_ = PyString_AsString(self._c_classId)
    self.dataset_id = H5ARRAYmake(self.parent_id, self.name, version,
                                  self.rank, self.dims,
                                  self.extdim, self.disk_type_id, NULL, NULL,
                                  self.filters.complevel, complib,
                                  self.filters.shuffle,
                                  self.filters.fletcher32,
                                  rbuf)
    if self.dataset_id < 0:
      raise HDF5ExtError("Problems creating the %s." % self.__class__.__name__)

    if self._v_file.params['PYTABLES_SYS_ATTRS']:
      # Set the conforming array attributes
      H5ATTRset_attribute_string(self.dataset_id, "CLASS", class_ )
      H5ATTRset_attribute_string(self.dataset_id, "VERSION", version)
      H5ATTRset_attribute_string(self.dataset_id, "TITLE", title)

    # Get the native type (so that it is HDF5 who is the responsible to deal
    # with non-native byteorders on-disk)
    self.type_id = get_native_type(self.disk_type_id)

    return (self.dataset_id, shape, atom)


  def _createCArray(self, char *title):
    cdef int i
    cdef herr_t ret
    cdef void *rbuf
    cdef char *complib, *version, *class_
    cdef int itemsize
    cdef ndarray dflts
    cdef void *fill_data
    cdef ndarray extdim
    cdef object atom

    atom = self.atom
    itemsize = atom.itemsize
    self.disk_type_id = AtomToHDF5Type(atom, self.byteorder)

    self.rank = len(self.shape)
    self.dims = malloc_dims(self.shape)
    if self.chunkshape:
      self.dims_chunk = malloc_dims(self.chunkshape)

    rbuf = NULL   # The data pointer. We don't have data to save initially
    # Manually convert some string values that can't be done automatically
    complib = PyString_AsString(self.filters.complib or '')
    version = PyString_AsString(self._v_version)
    class_ = PyString_AsString(self._c_classId)
    # Get the fill values
    if isinstance(atom.dflt, numpy.ndarray) or atom.dflt:
      dflts = numpy.array(atom.dflt, dtype=atom.dtype)
      fill_data = dflts.data
    else:
      dflts = numpy.zeros((), dtype=atom.dtype)
      fill_data = NULL
    if atom.shape == ():
      # The default is preferred as a scalar value instead of 0-dim array
      atom.dflt = dflts[()]
    else:
      atom.dflt = dflts

    # Create the CArray/EArray
    self.dataset_id = H5ARRAYmake(
      self.parent_id, self.name, version, self.rank,
      self.dims, self.extdim, self.disk_type_id, self.dims_chunk,
      fill_data, self.filters.complevel, complib,
      self.filters.shuffle, self.filters.fletcher32, rbuf)
    if self.dataset_id < 0:
      raise HDF5ExtError("Problems creating the %s." % self.__class__.__name__)

    if self._v_file.params['PYTABLES_SYS_ATTRS']:
      # Set the conforming array attributes
      H5ATTRset_attribute_string(self.dataset_id, "CLASS", class_ )
      H5ATTRset_attribute_string(self.dataset_id, "VERSION", version)
      H5ATTRset_attribute_string(self.dataset_id, "TITLE", title)
      if self.extdim >= 0:
        extdim = <ndarray>numpy.array([self.extdim], dtype="int32")
        # Attach the EXTDIM attribute in case of enlargeable arrays
        H5ATTRset_attribute(self.dataset_id, "EXTDIM", H5T_NATIVE_INT,
                            0, NULL, extdim.data)

    # Get the native type (so that it is HDF5 who is the responsible to deal
    # with non-native byteorders on-disk)
    self.type_id = get_native_type(self.disk_type_id)

    return self.dataset_id


  def _openArray(self):
    cdef size_t type_size, type_precision
    cdef H5T_class_t class_id
    cdef char byteorder[11]  # "irrelevant" fits easily here
    cdef int i
    cdef int extdim
    cdef herr_t ret
    cdef object shape, chunkshapes, atom
    cdef int fill_status
    cdef ndarray dflts
    cdef void *fill_data

    # Open the dataset
    self.dataset_id = H5Dopen(self.parent_id, self.name)
    if self.dataset_id < 0:
      raise HDF5ExtError("Non-existing node ``%s`` under ``%s``" % \
                         (self.name, self._v_parent._v_pathname))
    # Get the datatype handles
    self.disk_type_id, self.type_id = self._get_type_ids()
    # Get the atom for this type
    atom = AtomFromHDF5Type(self.disk_type_id)

    # Get the rank for this array object
    if H5ARRAYget_ndims(self.dataset_id, &self.rank) < 0:
      raise HDF5ExtError("Problems getting ndims!")
    # Allocate space for the dimension axis info
    self.dims = <hsize_t *>malloc(self.rank * sizeof(hsize_t))
    self.maxdims = <hsize_t *>malloc(self.rank * sizeof(hsize_t))
    # Get info on dimensions, class and type (of base class)
    ret = H5ARRAYget_info(self.dataset_id, self.disk_type_id,
                          self.dims, self.maxdims,
                          &class_id, byteorder)
    if ret < 0:
      raise HDF5ExtError("Unable to get array info.")

    # Get the extendable dimension (if any)
    self.extdim = -1  # default is non-extensible Array
    for i from 0 <= i < self.rank:
      if self.maxdims[i] == -1:
        self.extdim = i
        break

    # Get the shape as a python tuple
    shape = getshape(self.rank, self.dims)

    # Allocate space for the dimension chunking info
    self.dims_chunk = <hsize_t *>malloc(self.rank * sizeof(hsize_t))
    if H5ARRAYget_chunkshape(self.dataset_id, self.rank, self.dims_chunk) < 0:
      # The Array class is not chunked!
      chunkshapes = None
    else:
      # Get the chunkshape as a python tuple
      chunkshapes = getshape(self.rank, self.dims_chunk)

    # Get the fill value
    dflts = numpy.zeros((), dtype=atom.dtype)
    fill_data = dflts.data
    H5ARRAYget_fill_value(self.dataset_id, self.type_id,
                          &fill_status, fill_data);
    if fill_status == H5D_FILL_VALUE_UNDEFINED:
      # This can only happen with datasets created with other libraries
      # than PyTables.
      dflts = None
    if dflts is not None and atom.shape == ():
      # The default is preferred as a scalar value instead of 0-dim array
      atom.dflt = dflts[()]
    else:
      atom.dflt = dflts

    # Get the byteorder
    self.byteorder = correct_byteorder(atom.type, byteorder)

    return (self.dataset_id, atom, shape, chunkshapes)


  def _append(self, ndarray nparr):
    cdef int ret, extdim
    cdef hsize_t *dims_arr
    cdef void *rbuf
    cdef object shape

    # Allocate space for the dimension axis info
    dims_arr = npy_malloc_dims(self.rank, nparr.dimensions)
    # Get the pointer to the buffer data area
    rbuf = nparr.data
    # Convert some NumPy types to HDF5 before storing.
    if self.atom.type == 'time64':
      self._convertTime64(nparr, 0)

    # Append the records
    extdim = self.extdim
    Py_BEGIN_ALLOW_THREADS
    ret = H5ARRAYappend_records(self.dataset_id, self.type_id, self.rank,
                                self.dims, dims_arr, extdim, rbuf)
    Py_END_ALLOW_THREADS
    if ret < 0:
      raise HDF5ExtError("Problems appending the elements")

    free(dims_arr)
    # Update the new dimensionality
    shape = list(self.shape)
    shape[self.extdim] = SizeType(self.dims[self.extdim])
    self.shape = tuple(shape)


  def _readArray(self, hsize_t start, hsize_t stop, hsize_t step,
                 ndarray nparr):
    cdef herr_t ret
    cdef void *rbuf
    cdef hsize_t nrows
    cdef int extdim

    # Get the pointer to the buffer data area
    rbuf = nparr.data

    # Number of rows to read
    nrows = get_len_of_range(start, stop, step)
    if hasattr(self, "extdim"):
      extdim = self.extdim
    else:
      exdim = -1

    # Do the physical read
    Py_BEGIN_ALLOW_THREADS
    ret = H5ARRAYread(self.dataset_id, self.type_id, start, nrows, step,
                      extdim, rbuf)
    Py_END_ALLOW_THREADS
    if ret < 0:
      raise HDF5ExtError("Problems reading the array data.")

    if self.atom.kind == 'time':
      # Swap the byteorder by hand (this is not currently supported by HDF5)
      if H5Tget_order(self.type_id) != platform_byteorder:
        nparr.byteswap(True)

    # Convert some HDF5 types to NumPy after reading.
    if self.atom.type == 'time64':
      self._convertTime64(nparr, 1)

    return


  def _g_readSlice(self, ndarray startl, ndarray stopl, ndarray stepl,
                   ndarray nparr):
    cdef herr_t ret
    cdef hsize_t *start, *stop, *step
    cdef void *rbuf

    # Get the pointer to the buffer data area of startl, stopl and stepl arrays
    start = <hsize_t *>startl.data
    stop = <hsize_t *>stopl.data
    step = <hsize_t *>stepl.data
    # Get the pointer to the buffer data area
    rbuf = nparr.data

    # Do the physical read
    Py_BEGIN_ALLOW_THREADS
    ret = H5ARRAYreadSlice(self.dataset_id, self.type_id,
                           start, stop, step, rbuf)
    Py_END_ALLOW_THREADS
    if ret < 0:
      raise HDF5ExtError("Problems reading the array data.")

    if self.atom.kind == 'time':
      # Swap the byteorder by hand (this is not currently supported by HDF5)
      if H5Tget_order(self.type_id) != platform_byteorder:
        nparr.byteswap(True)

    # Convert some HDF5 types to NumPy after reading
    if self.atom.type == 'time64':
      self._convertTime64(nparr, 1)

    return


  def _g_readCoords(self, ndarray coords, ndarray nparr):
    """Read coordinates in an already created NumPy array."""
    cdef herr_t ret
    cdef hid_t space_id
    cdef hid_t mem_space_id
    cdef hsize_t size
    cdef void *rbuf
    cdef object mode

    # Get the dataspace handle
    space_id = H5Dget_space(self.dataset_id)
    # Create a memory dataspace handle
    size = nparr.size
    mem_space_id = H5Screate_simple(1, &size, NULL)

    # Select the dataspace to be read
    H5Sselect_elements(space_id, H5S_SELECT_SET,
                       <size_t>size, <hsize_t *>coords.data)

    # Get the pointer to the buffer data area
    rbuf = nparr.data

    # Do the actual read
    Py_BEGIN_ALLOW_THREADS
    ret = H5Dread(self.dataset_id, self.type_id, mem_space_id, space_id,
                  H5P_DEFAULT, rbuf)
    Py_END_ALLOW_THREADS
    if ret < 0:
      raise HDF5ExtError("Problems reading the array data.")

    # Terminate access to the memory dataspace
    H5Sclose(mem_space_id)
    # Terminate access to the dataspace
    H5Sclose(space_id)

    if self.atom.kind == 'time':
      # Swap the byteorder by hand (this is not currently supported by HDF5)
      if H5Tget_order(self.type_id) != platform_byteorder:
        nparr.byteswap(True)

    # Convert some HDF5 types to NumPy after reading
    if self.atom.type == 'time64':
      self._convertTime64(nparr, 1)

    return


  def perform_selection(self, space_id, start, count, step, idx, mode):
    """Performs a selection using start/count/step in the given axis.

    All other axes have their full range selected.  The selection is
    added to the current `space_id` selection using the given mode.

    Note: This is a backport from the h5py project.
    """
    cdef int select_mode
    cdef ndarray start_, count_, step_
    cdef hsize_t *startp, *countp, *stepp

    # Build arrays for the selection parameters
    startl, countl, stepl = [], [], []
    for i, x in enumerate(self.shape):
      if i != idx:
        startl.append(0)
        countl.append(x)
        stepl.append(1)
      else:
        startl.append(start)
        countl.append(count)
        stepl.append(step)
    start_ = numpy.array(startl, dtype="i8")
    count_ = numpy.array(countl, dtype="i8")
    step_ = numpy.array(stepl, dtype="i8")

    # Get the pointers to array data
    startp = <hsize_t *>start_.data
    countp = <hsize_t *>count_.data
    stepp = <hsize_t *>step_.data

    # Do the actual selection
    select_modes = {"AND": H5S_SELECT_AND, "NOTB": H5S_SELECT_NOTB}
    assert mode in select_modes
    select_mode = select_modes[mode]
    H5Sselect_hyperslab(space_id, <H5S_seloper_t>select_mode,
                        startp, stepp, countp, NULL)


  def _g_readSelection(self, object selection, ndarray nparr):
    """Read a selection in an already created NumPy array."""
    cdef herr_t ret
    cdef hid_t space_id
    cdef hid_t mem_space_id
    cdef hsize_t size
    cdef void *rbuf
    cdef object mode

    # Get the dataspace handle
    space_id = H5Dget_space(self.dataset_id)
    # Create a memory dataspace handle
    size = nparr.size
    mem_space_id = H5Screate_simple(1, &size, NULL)

    # Select the dataspace to be read
    # Start by selecting everything
    H5Sselect_all(space_id)
    # Now refine with outstanding selections
    for args in selection:
      self.perform_selection(space_id, *args)

    # Get the pointer to the buffer data area
    rbuf = nparr.data

    # Do the actual read
    Py_BEGIN_ALLOW_THREADS
    ret = H5Dread(self.dataset_id, self.type_id, mem_space_id, space_id,
                  H5P_DEFAULT, rbuf)
    Py_END_ALLOW_THREADS
    if ret < 0:
      raise HDF5ExtError("Problems reading the array data.")

    # Terminate access to the memory dataspace
    H5Sclose(mem_space_id)
    # Terminate access to the dataspace
    H5Sclose(space_id)

    if self.atom.kind == 'time':
      # Swap the byteorder by hand (this is not currently supported by HDF5)
      if H5Tget_order(self.type_id) != platform_byteorder:
        nparr.byteswap(True)

    # Convert some HDF5 types to NumPy after reading
    if self.atom.type == 'time64':
      self._convertTime64(nparr, 1)

    return


  def _g_writeSlice(self, ndarray startl, ndarray stepl, ndarray countl,
                    ndarray nparr):
    """Write a slice in an already created NumPy array."""
    cdef int ret
    cdef void *rbuf, *temp
    cdef hsize_t *start, *step, *count

    # Get the pointer to the buffer data area
    rbuf = nparr.data
    # Get the start, step and count values
    start = <hsize_t *>startl.data
    step = <hsize_t *>stepl.data
    count = <hsize_t *>countl.data

    # Convert some NumPy types to HDF5 before storing.
    if self.atom.type == 'time64':
      self._convertTime64(nparr, 0)

    # Modify the elements:
    Py_BEGIN_ALLOW_THREADS
    ret = H5ARRAYwrite_records(self.dataset_id, self.type_id, self.rank,
                               start, step, count, rbuf)
    Py_END_ALLOW_THREADS
    if ret < 0:
      raise HDF5ExtError("Internal error modifying the elements (H5ARRAYwrite_records returned errorcode -%i)"%(-ret))

    return


  def _g_writeCoords(self, ndarray coords, ndarray nparr):
    """Write a selection in an already created NumPy array."""
    cdef herr_t ret
    cdef hid_t space_id
    cdef hid_t mem_space_id
    cdef hsize_t size
    cdef void *rbuf
    cdef object mode

    # Get the dataspace handle
    space_id = H5Dget_space(self.dataset_id)
    # Create a memory dataspace handle
    size = nparr.size
    mem_space_id = H5Screate_simple(1, &size, NULL)

    # Select the dataspace to be written
    H5Sselect_elements(space_id, H5S_SELECT_SET,
                       <size_t>size, <hsize_t *>coords.data)

    # Get the pointer to the buffer data area
    rbuf = nparr.data

    # Convert some NumPy types to HDF5 before storing.
    if self.atom.type == 'time64':
      self._convertTime64(nparr, 0)

    # Do the actual write
    Py_BEGIN_ALLOW_THREADS
    ret = H5Dwrite(self.dataset_id, self.type_id, mem_space_id, space_id,
                   H5P_DEFAULT, rbuf)
    Py_END_ALLOW_THREADS
    if ret < 0:
      raise HDF5ExtError("Problems writing the array data.")

    # Terminate access to the memory dataspace
    H5Sclose(mem_space_id)
    # Terminate access to the dataspace
    H5Sclose(space_id)

    return


  def _g_writeSelection(self, object selection, ndarray nparr):
    """Write a selection in an already created NumPy array."""
    cdef herr_t ret
    cdef hid_t space_id
    cdef hid_t mem_space_id
    cdef hsize_t size
    cdef void *rbuf
    cdef object mode

    # Get the dataspace handle
    space_id = H5Dget_space(self.dataset_id)
    # Create a memory dataspace handle
    size = nparr.size
    mem_space_id = H5Screate_simple(1, &size, NULL)

    # Select the dataspace to be written
    # Start by selecting everything
    H5Sselect_all(space_id)
    # Now refine with outstanding selections
    for args in selection:
      self.perform_selection(space_id, *args)

    # Get the pointer to the buffer data area
    rbuf = nparr.data

    # Convert some NumPy types to HDF5 before storing.
    if self.atom.type == 'time64':
      self._convertTime64(nparr, 0)

    # Do the actual write
    Py_BEGIN_ALLOW_THREADS
    ret = H5Dwrite(self.dataset_id, self.type_id, mem_space_id, space_id,
                   H5P_DEFAULT, rbuf)
    Py_END_ALLOW_THREADS
    if ret < 0:
      raise HDF5ExtError("Problems writing the array data.")

    # Terminate access to the memory dataspace
    H5Sclose(mem_space_id)
    # Terminate access to the dataspace
    H5Sclose(space_id)

    return


  def __dealloc__(self):
    if self.dims:
      free(<void *>self.dims)
    if self.maxdims:
      free(<void *>self.maxdims)
    if self.dims_chunk:
      free(self.dims_chunk)



cdef class VLArray(Leaf):
  # Instance variables
  cdef hsize_t nrecords

  def _createArray(self, char *title):
    cdef int rank
    cdef hsize_t *dims
    cdef herr_t ret
    cdef void *rbuf
    cdef char *complib, *version, *class_
    cdef object type_, itemsize, atom, scatom

    atom = self.atom
    if not hasattr(atom, 'size'):  # it is a pseudo-atom
      atom = atom.base

    # Get the HDF5 type of the *scalar* atom
    scatom = atom.copy(shape=())
    self.base_type_id = AtomToHDF5Type(scatom, self.byteorder)

    # Allocate space for the dimension axis info
    rank = len(atom.shape)
    dims = malloc_dims(atom.shape)

    rbuf = NULL   # We don't have data to save initially

    # Manually convert some string values that can't be done automatically
    complib = PyString_AsString(self.filters.complib or '')
    version = PyString_AsString(self._v_version)
    class_ = PyString_AsString(self._c_classId)
    # Create the vlarray
    self.dataset_id = H5VLARRAYmake(self.parent_id, self.name, version,
                                    rank, dims, self.base_type_id,
                                    self.chunkshape[0], rbuf,
                                    self.filters.complevel, complib,
                                    self.filters.shuffle,
                                    self.filters.fletcher32,
                                    rbuf)
    if dims:
      free(<void *>dims)
    if self.dataset_id < 0:
      raise HDF5ExtError("Problems creating the VLArray.")
    self.nrecords = 0  # Initialize the number of records saved

    if self._v_file.params['PYTABLES_SYS_ATTRS']:
      # Set the conforming array attributes
      H5ATTRset_attribute_string(self.dataset_id, "CLASS", class_ )
      H5ATTRset_attribute_string(self.dataset_id, "VERSION", version)
      H5ATTRset_attribute_string(self.dataset_id, "TITLE", title)

    # Get the datatype handles
    self.disk_type_id, self.type_id = self._get_type_ids()

    return self.dataset_id


  def _openArray(self):
    cdef char byteorder[11]  # "irrelevant" fits easily here
    cdef int i, enumtype
    cdef int rank
    cdef herr_t ret
    cdef hsize_t nrecords, chunksize
    cdef object shape, dtype, type_

    # Open the dataset
    self.dataset_id = H5Dopen(self.parent_id, self.name)
    if self.dataset_id < 0:
      raise HDF5ExtError("Non-existing node ``%s`` under ``%s``" % \
                         (self.name, self._v_parent._v_pathname))
    # Get the datatype handles
    self.disk_type_id, self.type_id = self._get_type_ids()
    # Get the atom for this type
    atom = AtomFromHDF5Type(self.disk_type_id)

    # Get info on dimensions & types (of base class)
    H5VLARRAYget_info(self.dataset_id, self.disk_type_id, &nrecords,
                      byteorder)
    # Get some properties of the atomic type
    self._atomicdtype = atom.dtype
    self._atomictype = atom.type
    self._atomicshape = atom.shape
    self._atomicsize = atom.size

    # Get the byteorder
    self.byteorder = correct_byteorder(atom.type, byteorder)

    # Get the chunkshape (VLArrays are unidimensional entities)
    H5ARRAYget_chunkshape(self.dataset_id, 1, &chunksize)

    self.nrecords = nrecords  # Initialize the number of records saved
    return self.dataset_id, SizeType(nrecords), (SizeType(chunksize),), atom


  def _append(self, ndarray nparr, int nobjects):
    cdef int ret
    cdef void *rbuf

    # Get the pointer to the buffer data area
    if nobjects:
      rbuf = nparr.data
      # Convert some NumPy types to HDF5 before storing.
      if self.atom.type == 'time64':
        self._convertTime64(nparr, 0)
    else:
      rbuf = NULL

    # Append the records:
    Py_BEGIN_ALLOW_THREADS
    ret = H5VLARRAYappend_records(self.dataset_id, self.type_id,
                                  nobjects, self.nrecords, rbuf)
    Py_END_ALLOW_THREADS
    if ret < 0:
      raise HDF5ExtError("Problems appending the records.")

    self.nrecords = self.nrecords + 1


  def _modify(self, hsize_t nrow, ndarray nparr, int nobjects):
    cdef int ret
    cdef void *rbuf

    # Get the pointer to the buffer data area
    rbuf = nparr.data
    if nobjects:
      # Convert some NumPy types to HDF5 before storing.
      if self.atom.type == 'time64':
        self._convertTime64(nparr, 0)

    # Append the records:
    Py_BEGIN_ALLOW_THREADS
    ret = H5VLARRAYmodify_records(self.dataset_id, self.type_id,
                                  nrow, nobjects, rbuf)
    Py_END_ALLOW_THREADS
    if ret < 0:
      raise HDF5ExtError("Problems modifying the record.")

    return nobjects


  def _readArray(self, hsize_t start, hsize_t stop, hsize_t step):
    cdef int i
    cdef size_t vllen
    cdef herr_t ret
    cdef hvl_t *rdata
    cdef hsize_t nrows
    cdef hid_t space_id
    cdef hid_t mem_space_id
    cdef object buf, nparr, shape, datalist

    # Compute the number of rows to read
    nrows = get_len_of_range(start, stop, step)
    if start + nrows > self.nrows:
      raise HDF5ExtError(
        "Asking for a range of rows exceeding the available ones!.")

    # Now, read the chunk of rows
    Py_BEGIN_ALLOW_THREADS
    # Allocate the necessary memory for keeping the row handlers
    rdata = <hvl_t *>malloc(<size_t>nrows*sizeof(hvl_t))
    # Get the dataspace handle
    space_id = H5Dget_space(self.dataset_id)
    # Create a memory dataspace handle
    mem_space_id = H5Screate_simple(1, &nrows, NULL)
    # Select the data to be read
    H5Sselect_hyperslab(space_id, H5S_SELECT_SET, &start, &step, &nrows, NULL)
    # Do the actual read
    ret = H5Dread(self.dataset_id, self.type_id, mem_space_id, space_id,
                  H5P_DEFAULT, rdata)
    Py_END_ALLOW_THREADS
    if ret < 0:
      raise HDF5ExtError(
        "VLArray._readArray: Problems reading the array data.")

    datalist = []
    for i from 0 <= i < nrows:
      # Number of atoms in row
      vllen = rdata[i].len
      # Get the pointer to the buffer data area
      if vllen > 0:
        # Create a buffer to keep this info. It is important to do a
        # copy, because we will dispose the buffer memory later on by
        # calling the H5Dvlen_reclaim. PyString_FromStringAndSize does this.
        buf = PyString_FromStringAndSize(<char *>rdata[i].p,
                                         vllen*self._atomicsize)
      else:
        # Case where there is info with zero lentgh
        buf = None
      # Compute the shape for the read array
      shape = list(self._atomicshape)
      shape.insert(0, vllen)  # put the length at the beginning of the shape
      nparr = numpy.ndarray(
        buffer=buf, dtype=self._atomicdtype.base, shape=shape)
      # Set the writeable flag for this ndarray object
      nparr.flags.writeable = True
      if self.atom.kind == 'time':
        # Swap the byteorder by hand (this is not currently supported by HDF5)
        if H5Tget_order(self.type_id) != platform_byteorder:
          nparr.byteswap(True)
      # Convert some HDF5 types to NumPy after reading.
      if self.atom.type == 'time64':
        self._convertTime64(nparr, 1)
      # Append this array to the output list
      datalist.append(nparr)

    # Release resources
    # Reclaim all the (nested) VL data
    ret = H5Dvlen_reclaim(self.type_id, mem_space_id, H5P_DEFAULT, rdata)
    if ret < 0:
      raise HDF5ExtError("VLArray._readArray: error freeing the data buffer.")
    # Terminate access to the memory dataspace
    H5Sclose(mem_space_id)
    # Terminate access to the dataspace
    H5Sclose(space_id)
    # Free the amount of row pointers to VL row data
    free(rdata)

    return datalist



cdef class UnImplemented(Leaf):


  def _openUnImplemented(self):
    cdef object shape
    cdef char byteorder[11]  # "irrelevant" fits easily here

    # Get info on dimensions
    shape = H5UIget_info(self.parent_id, self.name, byteorder)
    shape = tuple(map(SizeType, shape))
    self.dataset_id = H5Dopen(self.parent_id, self.name)
    return (shape, byteorder, self.dataset_id)


  def _g_close(self):
    H5Dclose(self.dataset_id)



## Local Variables:
## mode: python
## py-indent-offset: 2
## tab-width: 2
## fill-column: 78
## End: