File: indexesExtension.pyx

package info (click to toggle)
pytables 2.3.1-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 14,624 kB
  • sloc: python: 55,641; xml: 15,737; ansic: 5,805; sh: 460; makefile: 234
file content (934 lines) | stat: -rw-r--r-- 35,047 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
#  Ei!, emacs, this is -*-Python-*- mode
########################################################################
#
#       License: BSD
#       Created: May 18, 2006
#       Author:  Francesc Alted - faltet@pytables.com
#
#       $Id$
#
########################################################################

"""Pyrex interface for keeping indexes classes.

Classes (type extensions):

    IndexArray
    CacheArray
    LastRowArray

Functions:

Misc variables:

    __version__
"""

import sys
import os
import warnings
import pickle
import cPickle

import numpy

from tables.exceptions import HDF5ExtError
from hdf5Extension cimport Array


# numpy functions & objects
from definitions cimport \
     memcpy, \
     Py_BEGIN_ALLOW_THREADS, Py_END_ALLOW_THREADS, \
     import_array, ndarray, \
     npy_intp, \
     npy_int8, npy_uint8, \
     npy_int16, npy_uint16, \
     npy_int32, npy_uint32, \
     npy_int64, npy_uint64, \
     npy_float32, npy_float64, \
     hid_t, herr_t, hsize_t, \
     H5Dget_space, H5Screate_simple, H5Sclose


from lrucacheExtension cimport NumCache


__version__ = "$Revision$"

#-------------------------------------------------------------------

# External C functions

# Functions for optimized operations with ARRAY for indexing purposes
cdef extern from "H5ARRAY-opt.h":
  herr_t H5ARRAYOinit_readSlice(
    hid_t dataset_id, hid_t *mem_space_id, hsize_t count)
  herr_t H5ARRAYOread_readSlice(
    hid_t dataset_id, hid_t type_id,
    hsize_t irow, hsize_t start, hsize_t stop, void *data)
  herr_t H5ARRAYOread_readSortedSlice(
    hid_t dataset_id, hid_t mem_space_id, hid_t type_id,
    hsize_t irow, hsize_t start, hsize_t stop, void *data)
  herr_t H5ARRAYOread_readBoundsSlice(
    hid_t dataset_id, hid_t mem_space_id, hid_t type_id,
    hsize_t irow, hsize_t start, hsize_t stop, void *data)
  herr_t H5ARRAYOreadSliceLR(
    hid_t dataset_id, hid_t type_id, hsize_t start, hsize_t stop, void *data)



# Functions for optimized operations for dealing with indexes
cdef extern from "idx-opt.h":
  int bisect_left_b(npy_int8 *a, long x, int hi, int offset)
  int bisect_left_ub(npy_uint8 *a, long x, int hi, int offset)
  int bisect_right_b(npy_int8 *a, long x, int hi, int offset)
  int bisect_right_ub(npy_uint8 *a, long x, int hi, int offset)
  int bisect_left_s(npy_int16 *a, long x, int hi, int offset)
  int bisect_left_us(npy_uint16 *a, long x, int hi, int offset)
  int bisect_right_s(npy_int16 *a, long x, int hi, int offset)
  int bisect_right_us(npy_uint16 *a, long x, int hi, int offset)
  int bisect_left_i(npy_int32 *a, long x, int hi, int offset)
  int bisect_left_ui(npy_uint32 *a, npy_uint32 x, int hi, int offset)
  int bisect_right_i(npy_int32 *a, long x, int hi, int offset)
  int bisect_right_ui(npy_uint32 *a, npy_uint32 x, int hi, int offset)
  int bisect_left_ll(npy_int64 *a, npy_int64 x, int hi, int offset)
  int bisect_left_ull(npy_uint64 *a, npy_uint64 x, int hi, int offset)
  int bisect_right_ll(npy_int64 *a, npy_int64 x, int hi, int offset)
  int bisect_right_ull(npy_uint64 *a, npy_uint64 x, int hi, int offset)
  int bisect_left_f(npy_float32 *a, npy_float64 x, int hi, int offset)
  int bisect_right_f(npy_float32 *a, npy_float64 x, int hi, int offset)
  int bisect_left_d(npy_float64 *a, npy_float64 x, int hi, int offset)
  int bisect_right_d(npy_float64 *a, npy_float64 x, int hi, int offset)

  int keysort_f64(npy_float64 *start1, char *start2, npy_intp num, int ts)
  int keysort_f32(npy_float32 *start1, char *start2, npy_intp num, int ts)
  int keysort_i64(npy_int64 *start1, char *start2, npy_intp num, int ts)
  int keysort_u64(npy_uint64 *start1, char *start2, npy_intp num, int ts)
  int keysort_i32(npy_int32 *start1, char *start2, npy_intp num, int ts)
  int keysort_u32(npy_uint32 *start1, char *start2, npy_intp num, int ts)
  int keysort_i16(npy_int16 *start1, char *start2, npy_intp num, int ts)
  int keysort_u16(npy_uint16 *start1, char *start2, npy_intp num, int ts)
  int keysort_i8(npy_int8 *start1, char *start2, npy_intp num, int ts)
  int keysort_u8(npy_uint8 *start1, char *start2, npy_intp num, int ts)
  int keysort_S(char *start1, int ss, char *start2, npy_intp num, int ts)



#----------------------------------------------------------------------------

# Initialization code

# The numpy API requires this function to be called before
# using any numpy facilities in an extension module.
import_array()

#---------------------------------------------------------------------------

# Functions

# Sorting functions
def keysort(ndarray array1, ndarray array2):
  """Sort array1 in-place. array2 is also sorted following the array1 order.

  array1 can be of any type, except complex or string.  array2 may be made of
  elements on any size.

  """
  cdef npy_intp size
  cdef int elsize1, elsize2

  size = array1.size
  elsize1 = array1.itemsize
  elsize2 = array2.itemsize
  if array1.dtype == "float64":
    return keysort_f64(<npy_float64 *>array1.data, array2.data, size, elsize2)
  elif array1.dtype == "float32":
    return keysort_f32(<npy_float32 *>array1.data, array2.data, size, elsize2)
  elif array1.dtype == "int64":
    return keysort_i64(<npy_int64 *>array1.data, array2.data, size, elsize2)
  elif array1.dtype == "uint64":
    return keysort_u64(<npy_uint64 *>array1.data, array2.data, size, elsize2)
  elif array1.dtype == "int32":
    return keysort_i32(<npy_int32 *>array1.data, array2.data, size, elsize2)
  elif array1.dtype == "uint32":
    return keysort_u32(<npy_uint32 *>array1.data, array2.data, size, elsize2)
  elif array1.dtype == "int16":
    return keysort_i16(<npy_int16 *>array1.data, array2.data, size, elsize2)
  elif array1.dtype == "uint16":
    return keysort_u16(<npy_uint16 *>array1.data, array2.data, size, elsize2)
  elif array1.dtype == "int8":
    return keysort_i8(<npy_int8 *>array1.data, array2.data, size, elsize2)
  elif array1.dtype == "uint8":
    return keysort_u8(<npy_uint8 *>array1.data, array2.data, size, elsize2)
  elif array1.dtype == "bool":
    return keysort_u8(<npy_uint8 *>array1.data, array2.data, size, elsize2)
  elif array1.dtype.char == "S":
    return keysort_S(array1.data, elsize1, array2.data, size, elsize2)
    # As it turns out, an indirect sort is always faster, and much faster on
    # new processors.  See
    # http://www.mail-archive.com/numpy-discussion@scipy.org/msg06639.html
    #
    # The next takes more memory (the idx array), but for large strings, this
    # should be negligible.
    #
    #sidx = array1.argsort()
    #array1[:] = array1[sidx]
    #array2[:] = array2[sidx]
    #return 0
  else:
    raise ValueError, "This shouldn't happen!"


# Classes


cdef class Index:
  pass


cdef class CacheArray(Array):
  """Container for keeping index caches of 1st and 2nd level."""
  cdef hid_t mem_space_id


  cdef initRead(self, int nbounds):
    # "Actions to accelerate the reads afterwards."

    # Precompute the mem_space_id
    if (H5ARRAYOinit_readSlice(self.dataset_id, &self.mem_space_id,
                               nbounds) < 0):
      raise HDF5ExtError("Problems initializing the bounds array data.")
    return


  cdef readSlice(self, hsize_t nrow, hsize_t start, hsize_t stop, void *rbuf):
    # "Read an slice of bounds."

    if (H5ARRAYOread_readBoundsSlice(
      self.dataset_id, self.mem_space_id, self.type_id,
      nrow, start, stop, rbuf) < 0):
      raise HDF5ExtError("Problems reading the bounds array data.")
    return


  def _g_close(self):
    super(Array, self)._g_close()
    # Release specific resources of this class
    if self.mem_space_id > 0:
      H5Sclose(self.mem_space_id)



cdef class IndexArray(Array):
  """Container for keeping sorted and indices values."""
  cdef void    *rbufst, *rbufln, *rbufrv, *rbufbc, *rbuflb
  cdef hid_t   mem_space_id
  cdef int     l_chunksize, l_slicesize, nbounds, indsize
  cdef CacheArray bounds_ext
  cdef NumCache boundscache, sortedcache
  cdef ndarray bufferbc, bufferlb


  def _readIndexSlice(self, hsize_t irow, hsize_t start, hsize_t stop,
                      ndarray idx):
    cdef herr_t ret

    # Do the physical read
    Py_BEGIN_ALLOW_THREADS
    ret = H5ARRAYOread_readSlice(self.dataset_id, self.type_id,
                                 irow, start, stop, idx.data)
    Py_END_ALLOW_THREADS
    if ret < 0:
      raise HDF5ExtError("Problems reading the index indices.")

    return


  def _initSortedSlice(self, index):
    "Initialize the structures for doing a binary search."
    cdef long ndims
    cdef int  rank, buflen, cachesize
    cdef char *bname
    cdef hsize_t count[2]
    cdef ndarray starts, lengths, rvcache
    cdef object maxslots, rowsize

    dtype = self.atom.dtype
    # Create the buffer for reading sorted data chunks if not created yet
    if <object>self.bufferlb is None:
      # Internal buffers
      self.bufferlb = numpy.empty(dtype=dtype, shape=self.chunksize)
      # Get the pointers to the different buffer data areas
      self.rbuflb = self.bufferlb.data
      # Init structures for accelerating sorted array reads
      rank = 2
      count[0] = 1; count[1] = self.chunksize
      self.mem_space_id = H5Screate_simple(rank, count, NULL)
      # Cache some counters in local extension variables
      self.l_chunksize = self.chunksize
      self.l_slicesize = self.slicesize

    # Get the addresses of buffer data
    starts = index.starts;  lengths = index.lengths
    self.rbufst = starts.data
    self.rbufln = lengths.data
    # The 1st cache is loaded completely in memory and needs to be reloaded
    rvcache = index.ranges[:]
    self.rbufrv = rvcache.data
    index.rvcache = <object>rvcache
    # Init the bounds array for reading
    self.nbounds = index.bounds.shape[1]
    self.bounds_ext = <CacheArray>index.bounds
    self.bounds_ext.initRead(self.nbounds)
    if str(dtype) in self._v_parent.opt_search_types:
      # The next caches should be defined only for optimized search types.
      # The 2nd level cache will replace the already existing ObjectCache and
      # already bound to the boundscache attribute. This way, the cache will
      # not be duplicated (I know, this smells badly, but anyway).
      params = self._v_file.params
      rowsize = (self.bounds_ext._v_chunkshape[1] * dtype.itemsize)
      maxslots = params['BOUNDS_MAX_SIZE'] / rowsize
      self.boundscache = <NumCache>NumCache(
        (maxslots, self.nbounds), dtype, 'non-opt types bounds')
      self.bufferbc = numpy.empty(dtype=dtype, shape=self.nbounds)
      # Get the pointer for the internal buffer for 2nd level cache
      self.rbufbc = self.bufferbc.data
      # Another NumCache for the sorted values
      rowsize = (self.chunksize*dtype.itemsize)
      maxslots = params['SORTED_MAX_SIZE'] / (self.chunksize*dtype.itemsize)
      self.sortedcache = <NumCache>NumCache(
        (maxslots, self.chunksize), dtype, 'sorted')


  cdef void *_g_readSortedSlice(self, hsize_t irow, hsize_t start,
                                hsize_t stop):
    """Read the sorted part of an index."""

    Py_BEGIN_ALLOW_THREADS
    ret = H5ARRAYOread_readSortedSlice(
      self.dataset_id, self.mem_space_id, self.type_id,
      irow, start, stop, self.rbuflb)
    Py_END_ALLOW_THREADS
    if ret < 0:
      raise HDF5ExtError("Problems reading the array data.")

    return self.rbuflb


  # This is callable from python
  def _readSortedSlice(self, hsize_t irow, hsize_t start, hsize_t stop):
    "Read the sorted part of an index."

    self._g_readSortedSlice(irow, start, stop)
    return self.bufferlb


# This has been copied from the standard module bisect.
# Checks for the values out of limits has been added at the beginning
# because I forsee that this should be a very common case.
# 2004-05-20
  def _bisect_left(self, a, x, int hi):
    """Return the index where to insert item x in list a, assuming a is sorted.

    The return value i is such that all e in a[:i] have e < x, and all e in
    a[i:] have e >= x.  So if x already appears in the list, i points just
    before the leftmost x already there.

    """
    cdef int lo, mid

    lo = 0
    if x <= a[0]: return 0
    if a[-1] < x: return hi
    while lo < hi:
        mid = (lo+hi)/2
        if a[mid] < x: lo = mid+1
        else: hi = mid
    return lo


  def _bisect_right(self, a, x, int hi):
    """Return the index where to insert item x in list a, assuming a is sorted.

    The return value i is such that all e in a[:i] have e <= x, and all e in
    a[i:] have e > x.  So if x already appears in the list, i points just
    beyond the rightmost x already there.

    """
    cdef int lo, mid

    lo = 0
    if x < a[0]: return 0
    if a[-1] <= x: return hi
    while lo < hi:
      mid = (lo+hi)/2
      if x < a[mid]: hi = mid
      else: lo = mid+1
    return lo


  cdef void *getLRUbounds(self, int nrow, int nbounds):
    """Get the bounds from the cache, or read them."""
    cdef void *vpointer
    cdef long nslot

    nslot = self.boundscache.getslot_(nrow)
    if nslot >= 0:
      vpointer = self.boundscache.getitem1_(nslot)
    else:
      # Bounds row is not in cache. Read it and put it in the LRU cache.
      self.bounds_ext.readSlice(nrow, 0, nbounds, self.rbufbc)
      self.boundscache.setitem_(nrow, self.rbufbc, 0)
      vpointer = self.rbufbc
    return vpointer


  cdef void *getLRUsorted(self, int nrow, int ncs, int nchunk, int cs):
    """Get the sorted row from the cache or read it."""
    cdef void *vpointer
    cdef npy_int64 nckey
    cdef long nslot
    cdef hsize_t start, stop

    # Compute the number of chunk read and use it as the key for the cache.
    nckey = nrow*ncs+nchunk
    nslot = self.sortedcache.getslot_(nckey)
    if nslot >= 0:
      vpointer = self.sortedcache.getitem1_(nslot)
    else:
      # The sorted chunk is not in cache. Read it and put it in the LRU cache.
      start = cs*nchunk;  stop = cs*(nchunk+1)
      vpointer = self._g_readSortedSlice(nrow, start, stop)
      self.sortedcache.setitem_(nckey, vpointer, 0)
    return vpointer


  # Optimized version for int8
  def _searchBinNA_b(self, long item1, long item2):
    cdef int cs, ss, ncs, nrow, nrows, nbounds, rvrow
    cdef int start, stop, tlength, length, bread, nchunk, nchunk2
    cdef int *rbufst, *rbufln
    # Variables with specific type
    cdef npy_int8 *rbufrv, *rbufbc, *rbuflb

    cs = self.l_chunksize;  ss = self.l_slicesize; ncs = ss / cs
    nbounds = self.nbounds;  nrows = self.nrows
    rbufst = <int *>self.rbufst;  rbufln = <int *>self.rbufln
    rbufrv = <npy_int8 *>self.rbufrv; tlength = 0
    for nrow from 0 <= nrow < nrows:
      rvrow = nrow*2;  bread = 0;  nchunk = -1
      # Look if item1 is in this row
      if item1 > rbufrv[rvrow]:
        if item1 <= rbufrv[rvrow+1]:
          # Get the bounds row from the LRU cache or read them.
          rbufbc = <npy_int8 *>self.getLRUbounds(nrow, nbounds)
          bread = 1
          nchunk = bisect_left_b(rbufbc, item1, nbounds, 0)
          # Get the sorted row from the LRU cache or read it.
          rbuflb = <npy_int8 *>self.getLRUsorted(nrow, ncs, nchunk, cs)
          start = bisect_left_b(rbuflb, item1, cs, 0) + cs*nchunk
        else:
          start = ss
      else:
        start = 0
      # Now, for item2
      if item2 >= rbufrv[rvrow]:
        if item2 < rbufrv[rvrow+1]:
          if not bread:
            # Get the bounds row from the LRU cache or read them.
            rbufbc = <npy_int8 *>self.getLRUbounds(nrow, nbounds)
          nchunk2 = bisect_right_b(rbufbc, item2, nbounds, 0)
          if nchunk2 <> nchunk:
            # Get the sorted row from the LRU cache or read it.
            rbuflb = <npy_int8 *>self.getLRUsorted(nrow, ncs, nchunk2, cs)
          stop = bisect_right_b(rbuflb, item2, cs, 0) + cs*nchunk2
        else:
          stop = ss
      else:
        stop = 0
      length = stop - start;  tlength = tlength + length
      rbufst[nrow] = start;  rbufln[nrow] = length;
    return tlength


  # Optimized version for uint8
  def _searchBinNA_ub(self, long item1, long item2):
    cdef int cs, ss, ncs, nrow, nrows, nbounds, rvrow
    cdef int start, stop, tlength, length, bread, nchunk, nchunk2
    cdef int *rbufst, *rbufln
    # Variables with specific type
    cdef npy_uint8 *rbufrv, *rbufbc, *rbuflb

    cs = self.l_chunksize;  ss = self.l_slicesize; ncs = ss / cs
    nbounds = self.nbounds;  nrows = self.nrows
    rbufst = <int *>self.rbufst;  rbufln = <int *>self.rbufln
    rbufrv = <npy_uint8 *>self.rbufrv; tlength = 0
    for nrow from 0 <= nrow < nrows:
      rvrow = nrow*2;  bread = 0;  nchunk = -1
      # Look if item1 is in this row
      if item1 > rbufrv[rvrow]:
        if item1 <= rbufrv[rvrow+1]:
          # Get the bounds row from the LRU cache or read them.
          rbufbc = <npy_uint8 *>self.getLRUbounds(nrow, nbounds)
          bread = 1
          nchunk = bisect_left_ub(rbufbc, item1, nbounds, 0)
          # Get the sorted row from the LRU cache or read it.
          rbuflb = <npy_uint8 *>self.getLRUsorted(nrow, ncs, nchunk, cs)
          start = bisect_left_ub(rbuflb, item1, cs, 0) + cs*nchunk
        else:
          start = ss
      else:
        start = 0
      # Now, for item2
      if item2 >= rbufrv[rvrow]:
        if item2 < rbufrv[rvrow+1]:
          if not bread:
            # Get the bounds row from the LRU cache or read them.
            rbufbc = <npy_uint8 *>self.getLRUbounds(nrow, nbounds)
          nchunk2 = bisect_right_ub(rbufbc, item2, nbounds, 0)
          if nchunk2 <> nchunk:
            # Get the sorted row from the LRU cache or read it.
            rbuflb = <npy_uint8 *>self.getLRUsorted(nrow, ncs, nchunk2, cs)
          stop = bisect_right_ub(rbuflb, item2, cs, 0) + cs*nchunk2
        else:
          stop = ss
      else:
        stop = 0
      length = stop - start;  tlength = tlength + length
      rbufst[nrow] = start;  rbufln[nrow] = length;
    return tlength


  # Optimized version for int16
  def _searchBinNA_s(self, long item1, long item2):
    cdef int cs, ss, ncs, nrow, nrows, nbounds, rvrow
    cdef int start, stop, tlength, length, bread, nchunk, nchunk2
    cdef int *rbufst, *rbufln
    # Variables with specific type
    cdef npy_int16 *rbufrv, *rbufbc, *rbuflb

    cs = self.l_chunksize;  ss = self.l_slicesize; ncs = ss / cs
    nbounds = self.nbounds;  nrows = self.nrows
    rbufst = <int *>self.rbufst;  rbufln = <int *>self.rbufln
    rbufrv = <npy_int16 *>self.rbufrv; tlength = 0
    for nrow from 0 <= nrow < nrows:
      rvrow = nrow*2;  bread = 0;  nchunk = -1
      # Look if item1 is in this row
      if item1 > rbufrv[rvrow]:
        if item1 <= rbufrv[rvrow+1]:
          # Get the bounds row from the LRU cache or read them.
          rbufbc = <npy_int16 *>self.getLRUbounds(nrow, nbounds)
          bread = 1
          nchunk = bisect_left_s(rbufbc, item1, nbounds, 0)
          # Get the sorted row from the LRU cache or read it.
          rbuflb = <npy_int16 *>self.getLRUsorted(nrow, ncs, nchunk, cs)
          start = bisect_left_s(rbuflb, item1, cs, 0) + cs*nchunk
        else:
          start = ss
      else:
        start = 0
      # Now, for item2
      if item2 >= rbufrv[rvrow]:
        if item2 < rbufrv[rvrow+1]:
          if not bread:
            # Get the bounds row from the LRU cache or read them.
            rbufbc = <npy_int16 *>self.getLRUbounds(nrow, nbounds)
          nchunk2 = bisect_right_s(rbufbc, item2, nbounds, 0)
          if nchunk2 <> nchunk:
            # Get the sorted row from the LRU cache or read it.
            rbuflb = <npy_int16 *>self.getLRUsorted(nrow, ncs, nchunk2, cs)
          stop = bisect_right_s(rbuflb, item2, cs, 0) + cs*nchunk2
        else:
          stop = ss
      else:
        stop = 0
      length = stop - start;  tlength = tlength + length
      rbufst[nrow] = start;  rbufln[nrow] = length;
    return tlength


  # Optimized version for uint16
  def _searchBinNA_us(self, long item1, long item2):
    cdef int cs, ss, ncs, nrow, nrows, nbounds, rvrow
    cdef int start, stop, tlength, length, bread, nchunk, nchunk2
    cdef int *rbufst, *rbufln
    # Variables with specific type
    cdef npy_uint16 *rbufrv, *rbufbc, *rbuflb

    cs = self.l_chunksize;  ss = self.l_slicesize; ncs = ss / cs
    nbounds = self.nbounds;  nrows = self.nrows
    rbufst = <int *>self.rbufst;  rbufln = <int *>self.rbufln
    rbufrv = <npy_uint16 *>self.rbufrv; tlength = 0
    for nrow from 0 <= nrow < nrows:
      rvrow = nrow*2;  bread = 0;  nchunk = -1
      # Look if item1 is in this row
      if item1 > rbufrv[rvrow]:
        if item1 <= rbufrv[rvrow+1]:
          # Get the bounds row from the LRU cache or read them.
          rbufbc = <npy_uint16 *>self.getLRUbounds(nrow, nbounds)
          bread = 1
          nchunk = bisect_left_us(rbufbc, item1, nbounds, 0)
          # Get the sorted row from the LRU cache or read it.
          rbuflb = <npy_uint16 *>self.getLRUsorted(nrow, ncs, nchunk, cs)
          start = bisect_left_us(rbuflb, item1, cs, 0) + cs*nchunk
        else:
          start = ss
      else:
        start = 0
      # Now, for item2
      if item2 >= rbufrv[rvrow]:
        if item2 < rbufrv[rvrow+1]:
          if not bread:
            # Get the bounds row from the LRU cache or read them.
            rbufbc = <npy_uint16 *>self.getLRUbounds(nrow, nbounds)
          nchunk2 = bisect_right_us(rbufbc, item2, nbounds, 0)
          if nchunk2 <> nchunk:
            # Get the sorted row from the LRU cache or read it.
            rbuflb = <npy_uint16 *>self.getLRUsorted(nrow, ncs, nchunk2, cs)
          stop = bisect_right_us(rbuflb, item2, cs, 0) + cs*nchunk2
        else:
          stop = ss
      else:
        stop = 0
      length = stop - start;  tlength = tlength + length
      rbufst[nrow] = start;  rbufln[nrow] = length;
    return tlength


  # Optimized version for int32
  def _searchBinNA_i(self, long item1, long item2):
    cdef int cs, ss, ncs, nrow, nrows, nbounds, rvrow
    cdef int start, stop, tlength, length, bread, nchunk, nchunk2
    cdef int *rbufst, *rbufln
    # Variables with specific type
    cdef npy_int32 *rbufrv, *rbufbc, *rbuflb

    cs = self.l_chunksize;  ss = self.l_slicesize; ncs = ss / cs
    nbounds = self.nbounds;  nrows = self.nrows
    rbufst = <int *>self.rbufst;  rbufln = <int *>self.rbufln
    rbufrv = <npy_int32 *>self.rbufrv; tlength = 0
    for nrow from 0 <= nrow < nrows:
      rvrow = nrow*2;  bread = 0;  nchunk = -1
      # Look if item1 is in this row
      if item1 > rbufrv[rvrow]:
        if item1 <= rbufrv[rvrow+1]:
          # Get the bounds row from the LRU cache or read them.
          rbufbc = <npy_int32 *>self.getLRUbounds(nrow, nbounds)
          bread = 1
          nchunk = bisect_left_i(rbufbc, item1, nbounds, 0)
          # Get the sorted row from the LRU cache or read it.
          rbuflb = <npy_int32 *>self.getLRUsorted(nrow, ncs, nchunk, cs)
          start = bisect_left_i(rbuflb, item1, cs, 0) + cs*nchunk
        else:
          start = ss
      else:
        start = 0
      # Now, for item2
      if item2 >= rbufrv[rvrow]:
        if item2 < rbufrv[rvrow+1]:
          if not bread:
            # Get the bounds row from the LRU cache or read them.
            rbufbc = <npy_int32 *>self.getLRUbounds(nrow, nbounds)
          nchunk2 = bisect_right_i(rbufbc, item2, nbounds, 0)
          if nchunk2 <> nchunk:
            # Get the sorted row from the LRU cache or read it.
            rbuflb = <npy_int32 *>self.getLRUsorted(nrow, ncs, nchunk2, cs)
          stop = bisect_right_i(rbuflb, item2, cs, 0) + cs*nchunk2
        else:
          stop = ss
      else:
        stop = 0
      length = stop - start;  tlength = tlength + length
      rbufst[nrow] = start;  rbufln[nrow] = length;
    return tlength


  # Optimized version for uint32
  def _searchBinNA_ui(self, npy_uint32 item1, npy_uint32 item2):
    cdef int cs, ss, ncs, nrow, nrows, nbounds, rvrow
    cdef int start, stop, tlength, length, bread, nchunk, nchunk2
    cdef int *rbufst, *rbufln
    # Variables with specific type
    cdef npy_uint32 *rbufrv, *rbufbc, *rbuflb

    cs = self.l_chunksize;  ss = self.l_slicesize; ncs = ss / cs
    nbounds = self.nbounds;  nrows = self.nrows
    rbufst = <int *>self.rbufst;  rbufln = <int *>self.rbufln
    rbufrv = <npy_uint32 *>self.rbufrv; tlength = 0
    for nrow from 0 <= nrow < nrows:
      rvrow = nrow*2;  bread = 0;  nchunk = -1
      # Look if item1 is in this row
      if item1 > rbufrv[rvrow]:
        if item1 <= rbufrv[rvrow+1]:
          # Get the bounds row from the LRU cache or read them.
          rbufbc = <npy_uint32 *>self.getLRUbounds(nrow, nbounds)
          bread = 1
          nchunk = bisect_left_ui(rbufbc, item1, nbounds, 0)
          # Get the sorted row from the LRU cache or read it.
          rbuflb = <npy_uint32 *>self.getLRUsorted(nrow, ncs, nchunk, cs)
          start = bisect_left_ui(rbuflb, item1, cs, 0) + cs*nchunk
        else:
          start = ss
      else:
        start = 0
      # Now, for item2
      if item2 >= rbufrv[rvrow]:
        if item2 < rbufrv[rvrow+1]:
          if not bread:
            # Get the bounds row from the LRU cache or read them.
            rbufbc = <npy_uint32 *>self.getLRUbounds(nrow, nbounds)
          nchunk2 = bisect_right_ui(rbufbc, item2, nbounds, 0)
          if nchunk2 <> nchunk:
            # Get the sorted row from the LRU cache or read it.
            rbuflb = <npy_uint32 *>self.getLRUsorted(nrow, ncs, nchunk2, cs)
          stop = bisect_right_ui(rbuflb, item2, cs, 0) + cs*nchunk2
        else:
          stop = ss
      else:
        stop = 0
      length = stop - start;  tlength = tlength + length
      rbufst[nrow] = start;  rbufln[nrow] = length;
    return tlength


  # Optimized version for int64
  def _searchBinNA_ll(self, npy_int64 item1, npy_int64 item2):
    cdef int cs, ss, ncs, nrow, nrows, nbounds, rvrow
    cdef int start, stop, tlength, length, bread, nchunk, nchunk2
    cdef int *rbufst, *rbufln
    # Variables with specific type
    cdef npy_int64 *rbufrv, *rbufbc, *rbuflb

    cs = self.l_chunksize;  ss = self.l_slicesize; ncs = ss / cs
    nbounds = self.nbounds;  nrows = self.nrows
    rbufst = <int *>self.rbufst;  rbufln = <int *>self.rbufln
    rbufrv = <npy_int64 *>self.rbufrv; tlength = 0
    for nrow from 0 <= nrow < nrows:
      rvrow = nrow*2;  bread = 0;  nchunk = -1
      # Look if item1 is in this row
      if item1 > rbufrv[rvrow]:
        if item1 <= rbufrv[rvrow+1]:
          # Get the bounds row from the LRU cache or read them.
          rbufbc = <npy_int64 *>self.getLRUbounds(nrow, nbounds)
          bread = 1
          nchunk = bisect_left_ll(rbufbc, item1, nbounds, 0)
          # Get the sorted row from the LRU cache or read it.
          rbuflb = <npy_int64 *>self.getLRUsorted(nrow, ncs, nchunk, cs)
          start = bisect_left_ll(rbuflb, item1, cs, 0) + cs*nchunk
        else:
          start = ss
      else:
        start = 0
      # Now, for item2
      if item2 >= rbufrv[rvrow]:
        if item2 < rbufrv[rvrow+1]:
          if not bread:
            # Get the bounds row from the LRU cache or read them.
            rbufbc = <npy_int64 *>self.getLRUbounds(nrow, nbounds)
          nchunk2 = bisect_right_ll(rbufbc, item2, nbounds, 0)
          if nchunk2 <> nchunk:
            # Get the sorted row from the LRU cache or read it.
            rbuflb = <npy_int64 *>self.getLRUsorted(nrow, ncs, nchunk2, cs)
          stop = bisect_right_ll(rbuflb, item2, cs, 0) + cs*nchunk2
        else:
          stop = ss
      else:
        stop = 0
      length = stop - start;  tlength = tlength + length
      rbufst[nrow] = start;  rbufln[nrow] = length;
    return tlength


  # Optimized version for uint64
  def _searchBinNA_ull(self, npy_uint64 item1, npy_uint64 item2):
    cdef int cs, ss, ncs, nrow, nrows, nbounds, rvrow
    cdef int start, stop, tlength, length, bread, nchunk, nchunk2
    cdef int *rbufst, *rbufln
    # Variables with specific type
    cdef npy_uint64 *rbufrv, *rbufbc, *rbuflb

    cs = self.l_chunksize;  ss = self.l_slicesize; ncs = ss / cs
    nbounds = self.nbounds;  nrows = self.nrows
    rbufst = <int *>self.rbufst;  rbufln = <int *>self.rbufln
    rbufrv = <npy_uint64 *>self.rbufrv; tlength = 0
    for nrow from 0 <= nrow < nrows:
      rvrow = nrow*2;  bread = 0;  nchunk = -1
      # Look if item1 is in this row
      if item1 > rbufrv[rvrow]:
        if item1 <= rbufrv[rvrow+1]:
          # Get the bounds row from the LRU cache or read them.
          rbufbc = <npy_uint64 *>self.getLRUbounds(nrow, nbounds)
          bread = 1
          nchunk = bisect_left_ull(rbufbc, item1, nbounds, 0)
          # Get the sorted row from the LRU cache or read it.
          rbuflb = <npy_uint64 *>self.getLRUsorted(nrow, ncs, nchunk, cs)
          start = bisect_left_ull(rbuflb, item1, cs, 0) + cs*nchunk
        else:
          start = ss
      else:
        start = 0
      # Now, for item2
      if item2 >= rbufrv[rvrow]:
        if item2 < rbufrv[rvrow+1]:
          if not bread:
            # Get the bounds row from the LRU cache or read them.
            rbufbc = <npy_uint64 *>self.getLRUbounds(nrow, nbounds)
          nchunk2 = bisect_right_ull(rbufbc, item2, nbounds, 0)
          if nchunk2 <> nchunk:
            # Get the sorted row from the LRU cache or read it.
            rbuflb = <npy_uint64 *>self.getLRUsorted(nrow, ncs, nchunk2, cs)
          stop = bisect_right_ull(rbuflb, item2, cs, 0) + cs*nchunk2
        else:
          stop = ss
      else:
        stop = 0
      length = stop - start;  tlength = tlength + length
      rbufst[nrow] = start;  rbufln[nrow] = length;
    return tlength


  # Optimized version for float32
  def _searchBinNA_f(self, npy_float64 item1, npy_float64 item2):
    cdef int cs, ss, ncs, nrow, nrows, nrow2, nbounds, rvrow
    cdef int start, stop, tlength, length, bread, nchunk, nchunk2
    cdef int *rbufst, *rbufln
    # Variables with specific type
    cdef npy_float32 *rbufrv, *rbufbc, *rbuflb

    cs = self.l_chunksize;  ss = self.l_slicesize;  ncs = ss / cs
    nbounds = self.nbounds;  nrows = self.nrows;  tlength = 0
    rbufst = <int *>self.rbufst;  rbufln = <int *>self.rbufln
    # Limits not in cache, do a lookup
    rbufrv = <npy_float32 *>self.rbufrv
    for nrow from 0 <= nrow < nrows:
      rvrow = nrow*2;  bread = 0;  nchunk = -1
      # Look if item1 is in this row
      if item1 > rbufrv[rvrow]:
        if item1 <= rbufrv[rvrow+1]:
          # Get the bounds row from the LRU cache or read them.
          rbufbc = <npy_float32 *>self.getLRUbounds(nrow, nbounds)
          bread = 1
          nchunk = bisect_left_f(rbufbc, item1, nbounds, 0)
          # Get the sorted row from the LRU cache or read it.
          rbuflb = <npy_float32 *>self.getLRUsorted(nrow, ncs, nchunk, cs)
          start = bisect_left_f(rbuflb, item1, cs, 0) + cs*nchunk
        else:
          start = ss
      else:
        start = 0
      # Now, for item2
      if item2 >= rbufrv[rvrow]:
        if item2 < rbufrv[rvrow+1]:
          if not bread:
            # Get the bounds row from the LRU cache or read them.
            rbufbc = <npy_float32 *>self.getLRUbounds(nrow, nbounds)
          nchunk2 = bisect_right_f(rbufbc, item2, nbounds, 0)
          if nchunk2 <> nchunk:
            # Get the sorted row from the LRU cache or read it.
            rbuflb = <npy_float32 *>self.getLRUsorted(nrow, ncs, nchunk2, cs)
          stop = bisect_right_f(rbuflb, item2, cs, 0) + cs*nchunk2
        else:
          stop = ss
      else:
        stop = 0
      length = stop - start;  tlength = tlength + length
      rbufst[nrow] = start;  rbufln[nrow] = length;
    return tlength


  # Optimized version for float64
  def _searchBinNA_d(self, npy_float64 item1, npy_float64 item2):
    cdef int cs, ss, ncs, nrow, nrows, nrow2, nbounds, rvrow
    cdef int start, stop, tlength, length, bread, nchunk, nchunk2
    cdef int *rbufst, *rbufln
    # Variables with specific type
    cdef npy_float64 *rbufrv, *rbufbc, *rbuflb

    cs = self.l_chunksize;  ss = self.l_slicesize;  ncs = ss / cs
    nbounds = self.nbounds;  nrows = self.nrows;  tlength = 0
    rbufst = <int *>self.rbufst;  rbufln = <int *>self.rbufln
    # Limits not in cache, do a lookup
    rbufrv = <npy_float64 *>self.rbufrv
    for nrow from 0 <= nrow < nrows:
      rvrow = nrow*2;  bread = 0;  nchunk = -1
      # Look if item1 is in this row
      if item1 > rbufrv[rvrow]:
        if item1 <= rbufrv[rvrow+1]:
          # Get the bounds row from the LRU cache or read them.
          rbufbc = <npy_float64 *>self.getLRUbounds(nrow, nbounds)
          bread = 1
          nchunk = bisect_left_d(rbufbc, item1, nbounds, 0)
          # Get the sorted row from the LRU cache or read it.
          rbuflb = <npy_float64 *>self.getLRUsorted(nrow, ncs, nchunk, cs)
          start = bisect_left_d(rbuflb, item1, cs, 0) + cs*nchunk
        else:
          start = ss
      else:
        start = 0
      # Now, for item2
      if item2 >= rbufrv[rvrow]:
        if item2 < rbufrv[rvrow+1]:
          if not bread:
            # Get the bounds row from the LRU cache or read them.
            rbufbc = <npy_float64 *>self.getLRUbounds(nrow, nbounds)
          nchunk2 = bisect_right_d(rbufbc, item2, nbounds, 0)
          if nchunk2 <> nchunk:
            # Get the sorted row from the LRU cache or read it.
            rbuflb = <npy_float64 *>self.getLRUsorted(nrow, ncs, nchunk2, cs)
          stop = bisect_right_d(rbuflb, item2, cs, 0) + cs*nchunk2
        else:
          stop = ss
      else:
        stop = 0
      length = stop - start;  tlength = tlength + length
      rbufst[nrow] = start;  rbufln[nrow] = length;
    return tlength


  def _g_close(self):
    super(Array, self)._g_close()
    # Release specific resources of this class
    if self.mem_space_id > 0:
      H5Sclose(self.mem_space_id)



cdef class LastRowArray(Array):
  """
  Container for keeping sorted and indices values of last rows of an index.
  """

  def _readIndexSlice(self, hsize_t start, hsize_t stop, ndarray idx):
    "Read the reverse index part of an LR index."

    Py_BEGIN_ALLOW_THREADS
    ret = H5ARRAYOreadSliceLR(self.dataset_id, self.type_id,
                              start, stop, idx.data)
    Py_END_ALLOW_THREADS
    if ret < 0:
      raise HDF5ExtError("Problems reading the index data in Last Row.")
    return


  def _readSortedSlice(self, IndexArray sorted, hsize_t start, hsize_t stop):
    "Read the sorted part of an LR index."
    cdef void  *rbuflb

    rbuflb = sorted.rbuflb  # direct access to rbuflb: very fast.
    Py_BEGIN_ALLOW_THREADS
    ret = H5ARRAYOreadSliceLR(self.dataset_id, self.type_id,
                              start, stop, rbuflb)
    Py_END_ALLOW_THREADS
    if ret < 0:
      raise HDF5ExtError("Problems reading the index data.")
    return sorted.bufferlb[:stop-start]



## Local Variables:
## mode: python
## py-indent-offset: 2
## tab-width: 2
## fill-column: 78
## End: