File: tableextension.pyx

package info (click to toggle)
pytables 3.1.1-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 12,632 kB
  • ctags: 13,004
  • sloc: python: 58,642; ansic: 16,440; cpp: 1,463; sh: 452; makefile: 289
file content (1640 lines) | stat: -rw-r--r-- 58,864 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
# -*- coding: utf-8 -*-

########################################################################
#
# License: BSD
# Created: June 17, 2005
# Author:  Francesc Alted - faltet@pytables.com
#
# $Id$
#
########################################################################

"""Here is where Table and Row extension types live.

Classes (type extensions):

    Table
    Row

Functions:

Misc variables:

"""

import sys
import numpy
from time import time

from tables.description import Col
from tables.exceptions import HDF5ExtError
from tables.conditions import call_on_recarr
from tables.utilsextension import (get_nested_field, atom_from_hdf5_type,
  create_nested_type, hdf5_to_np_ext_type, create_nested_type, platform_byteorder,
  pttype_to_hdf5, pt_special_kinds, npext_prefixes_to_ptkinds, hdf5_class_to_string,
  H5T_STD_I64)
from tables.utils import SizeType

from utilsextension cimport get_native_type, cstr_to_pystr

# numpy functions & objects
from hdf5extension cimport Leaf
from cpython cimport PY_MAJOR_VERSION
from cpython.unicode cimport PyUnicode_DecodeUTF8
from libc.stdio cimport snprintf
from libc.stdlib cimport malloc, free
from libc.string cimport memcpy, strdup, strcmp, strlen
from numpy cimport (import_array, ndarray, PyArray_GETITEM, PyArray_SETITEM, \
  npy_intp)
from definitions cimport (hid_t, herr_t, hsize_t, htri_t,
  H5F_ACC_RDONLY, H5P_DEFAULT, H5D_CHUNKED, H5T_DIR_DEFAULT,
  H5F_SCOPE_LOCAL, H5F_SCOPE_GLOBAL, H5T_COMPOUND, H5Tget_order,
  H5Fflush, H5Dget_create_plist, H5T_ORDER_LE,
  H5D_layout_t, H5Dopen, H5Dclose, H5Dread, H5Dget_type, H5Dget_space,
  H5Pget_layout, H5Pget_chunk, H5Pclose,
  H5Sget_simple_extent_ndims, H5Sget_simple_extent_dims, H5Sclose,
  H5T_class_t, H5Tget_size, H5Tset_size, H5Tcreate, H5Tcopy, H5Tclose,
  H5Tget_nmembers, H5Tget_member_name, H5Tget_member_type, H5Tget_native_type,
  H5Tget_member_value, H5Tinsert, H5Tget_class, H5Tget_super, H5Tget_offset,
  H5T_cset_t, H5T_CSET_ASCII, H5T_CSET_UTF8,
  H5ATTRset_attribute_string, H5ATTRset_attribute,
  get_len_of_range, get_order, set_order, is_complex,
  conv_float64_timeval32, truncate_dset)

from lrucacheextension cimport ObjectCache, NumCache

from tables._past import previous_api, previous_api_property


#-----------------------------------------------------------------

# Optimized HDF5 API for PyTables
cdef extern from "H5TB-opt.h" nogil:

  herr_t H5TBOmake_table( char *table_title, hid_t loc_id, char *dset_name,
                          char *version, char *class_,
                          hid_t mem_type_id, hsize_t nrecords,
                          hsize_t chunk_size, void *fill_data, int compress,
                          char *complib, int shuffle, int fletcher32,
                          void *data )

  herr_t H5TBOread_records( hid_t dataset_id, hid_t mem_type_id,
                            hsize_t start, hsize_t nrecords, void *data )

  herr_t H5TBOread_elements( hid_t dataset_id, hid_t mem_type_id,
                             hsize_t nrecords, void *coords, void *data )

  herr_t H5TBOappend_records( hid_t dataset_id, hid_t mem_type_id,
                              hsize_t nrecords, hsize_t nrecords_orig,
                              void *data )

  herr_t H5TBOwrite_records ( hid_t dataset_id, hid_t mem_type_id,
                              hsize_t start, hsize_t nrecords,
                              hsize_t step, void *data )

  herr_t H5TBOwrite_elements( hid_t dataset_id, hid_t mem_type_id,
                              hsize_t nrecords, void *coords, void *data )

  herr_t H5TBOdelete_records( hid_t   dataset_id, hid_t   mem_type_id,
                              hsize_t ntotal_records, size_t  src_size,
                              hsize_t start, hsize_t nrecords,
                              hsize_t maxtuples )


#----------------------------------------------------------------------------

# Initialization code

# The numpy API requires this function to be called before
# using any numpy facilities in an extension module.
import_array()

#-------------------------------------------------------------


# Private functions
cdef get_nested_field_cache(recarray, fieldname, fieldcache):
  """Get the maybe nested field named `fieldname` from the `recarray`.

  The `fieldname` may be a simple field name or a nested field name with
  slah-separated components. It can also be an integer specifying the position
  of the field.

  """

  try:
    field = fieldcache[fieldname]
  except KeyError:
    # Check whether fieldname is an integer and if so, get the field
    # straight from the recarray dictionary (it can't be anywhere else)
    if isinstance(fieldname, int):
      field = recarray[fieldname]
    else:
      field = get_nested_field(recarray, fieldname)
    fieldcache[fieldname] = field
  return field


cdef join_path(object parent, object name):
  if parent == "":
    return name
  else:
    return parent + '/' + name


# Public classes

cdef class Table(Leaf):
  # instance variables
  cdef void     *wbuf

  def _create_table(self, title, complib, obversion):
    cdef int     offset
    cdef int     ret
    cdef long    buflen
    cdef hid_t   oid
    cdef void    *data
    cdef hsize_t nrows
    cdef bytes   class_
    cdef ndarray wdflts
    cdef void    *fill_data
    cdef ndarray recarr
    cdef object  name
    cdef bytes encoded_title, encoded_complib, encoded_obversion
    cdef char *ctitle = NULL
    cdef char *cobversion = NULL
    cdef bytes encoded_name
    cdef char fieldname[128]
    cdef int i
    cdef H5T_cset_t cset = H5T_CSET_ASCII

    encoded_title = title.encode('utf-8')
    encoded_complib = complib.encode('utf-8')
    encoded_obversion = obversion.encode('utf-8')
    encoded_name = self.name.encode('utf-8')

    # Get the C pointer
    ctitle = encoded_title
    cobversion = encoded_obversion

    # Compute the complete compound datatype based on the table description
    self.disk_type_id = create_nested_type(self.description, self.byteorder)
    #self.type_id = H5Tcopy(self.disk_type_id)
    # A H5Tcopy only is not enough, as we want the in-memory type to be
    # in the byteorder of the machine (sys.byteorder).
    self.type_id = create_nested_type(self.description, sys.byteorder)

    # The fill values area
    wdflts = self._v_wdflts
    if wdflts is None:
      fill_data = NULL
    else:
      fill_data = wdflts.data

    # test if there is data to be saved initially
    if self._v_recarray is not None:
      recarr = self._v_recarray
      data = recarr.data
    else:
      data = NULL

    class_ = self._c_classid.encode('utf-8')
    self.dataset_id = H5TBOmake_table(ctitle, self.parent_id, encoded_name,
                                      cobversion, class_, self.disk_type_id,
                                      self.nrows, self.chunkshape[0],
                                      fill_data,
                                      self.filters.complevel, encoded_complib,
                                      self.filters.shuffle,
                                      self.filters.fletcher32,
                                      data)
    if self.dataset_id < 0:
      raise HDF5ExtError("Problems creating the table")

    if self._v_file.params['PYTABLES_SYS_ATTRS']:
      if PY_MAJOR_VERSION > 2:
        cset = H5T_CSET_UTF8
      # Set the conforming table attributes
      # Attach the CLASS attribute
      ret = H5ATTRset_attribute_string(self.dataset_id, "CLASS", class_,
                                       len(class_), cset)
      if ret < 0:
        raise HDF5ExtError("Can't set attribute '%s' in table:\n %s." %
                           ("CLASS", self.name))
      # Attach the VERSION attribute
      ret = H5ATTRset_attribute_string(self.dataset_id, "VERSION", cobversion,
                                       len(encoded_obversion), cset)
      if ret < 0:
        raise HDF5ExtError("Can't set attribute '%s' in table:\n %s." %
                           ("VERSION", self.name))
      # Attach the TITLE attribute
      ret = H5ATTRset_attribute_string(self.dataset_id, "TITLE", ctitle,
                                       len(encoded_title), cset)
      if ret < 0:
        raise HDF5ExtError("Can't set attribute '%s' in table:\n %s." %
                           ("TITLE", self.name))
      # Attach the NROWS attribute
      nrows = self.nrows
      ret = H5ATTRset_attribute(self.dataset_id, "NROWS", H5T_STD_I64,
                                0, NULL, <char *>&nrows)
      if ret < 0:
        raise HDF5ExtError("Can't set attribute '%s' in table:\n %s." %
                           ("NROWS", self.name))

      # Attach the FIELD_N_NAME attributes
      # We write only the first level names
      for i, name in enumerate(self.description._v_names):
        snprintf(fieldname, 128, "FIELD_%d_NAME", i)
        encoded_name = name.encode('utf-8')
        ret = H5ATTRset_attribute_string(self.dataset_id, fieldname,
                                         encoded_name, len(encoded_name),
                                         cset)
      if ret < 0:
        raise HDF5ExtError("Can't set attribute '%s' in table:\n %s." %
                           (fieldname, self.name))

    # If created in PyTables, the table is always chunked
    self._chunked = True  # Accessible from python

    # Finally, return the object identifier.
    return self.dataset_id


  cdef get_nested_type(self, hid_t type_id, hid_t native_type_id,
                     object colpath, object field_byteorders):
    """Open a nested type and return a nested dictionary as description."""

    cdef hid_t   member_type_id, native_member_type_id
    cdef hsize_t nfields
    cdef hsize_t dims[1]
    cdef size_t  itemsize
    cdef int     i
    cdef char    *c_colname
    cdef H5T_class_t class_id
    cdef char    c_byteorder2[11]  # "irrelevant" fits easily here
    cdef char    *sys_byteorder
    cdef object  desc, colobj, colpath2, typeclassname, typeclass
    cdef object  byteorder
    cdef str     colname, byteorder2

    offset = 0
    desc = {}
    # Get the number of members
    nfields = H5Tget_nmembers(type_id)
    # Iterate thru the members
    for i from 0 <= i < nfields:
      # Get the member name
      c_colname = H5Tget_member_name(type_id, i)
      colname = cstr_to_pystr(c_colname)

      # Get the member type
      member_type_id = H5Tget_member_type(type_id, i)
      # Get the HDF5 class
      class_id = H5Tget_class(member_type_id)
      if class_id == H5T_COMPOUND and not is_complex(member_type_id):
        colpath2 = join_path(colpath, colname)
        # Create the native data in-memory (without gaps!)
        itemsize = H5Tget_size(member_type_id)
        native_member_type_id = H5Tcreate(H5T_COMPOUND, itemsize)
        desc[colname], itemsize = self.get_nested_type(
          member_type_id, native_member_type_id, colpath2, field_byteorders)
        desc[colname]["_v_pos"] = i  # Remember the position
      else:
        # Get the member format and the corresponding Col object
        try:
          native_member_type_id = get_native_type(member_type_id)
          atom = atom_from_hdf5_type(native_member_type_id)
          colobj = Col.from_atom(atom, pos=i)
          itemsize = H5Tget_size(native_member_type_id)
        except TypeError, te:
          # Re-raise TypeError again with more info
          raise TypeError(
            ("table ``%s``, column ``%s``: %%s" % (self.name, colname))
            % te.args[0])
        desc[colname] = colobj
        # For time kinds, save the byteorder of the column
        # (useful for conversion of time datatypes later on)
        if colobj.kind == "time":
          colobj._byteorder = H5Tget_order(member_type_id)
          if colobj._byteorder == H5T_ORDER_LE:
            field_byteorders.append("little")
          else:
            field_byteorders.append("big")
        elif colobj.kind in ['int', 'uint', 'float', 'complex', 'enum']:
          # Keep track of the byteorder for this column
          get_order(member_type_id, c_byteorder2)
          byteorder2 = cstr_to_pystr(c_byteorder2)
          if byteorder2 in ["little", "big"]:
            field_byteorders.append(byteorder2)

      # Insert the native member
      H5Tinsert(native_type_id, c_colname, offset, native_member_type_id)
      # Update the offset
      offset = offset + itemsize
      # Release resources
      H5Tclose(native_member_type_id)
      H5Tclose(member_type_id)
      free(c_colname)

    # set the byteorder and other things (just in top level)
    if colpath == "":
      # Compute a byteorder for the entire table
      if len(field_byteorders) > 0:
        field_byteorders = numpy.array(field_byteorders)
        # Cython doesn't interpret well the extended comparison
        # operators so this: field_byteorders == "little" doesn't work
        # as expected
        if numpy.alltrue(field_byteorders.__eq__("little")):
          byteorder = "little"
        elif numpy.alltrue(field_byteorders.__eq__("big")):
          byteorder = "big"
        else:  # Yes! someone has done it!
          byteorder = "mixed"
      else:
        byteorder = "irrelevant"
      self.byteorder = byteorder
    # Correct the type size in case the memory type size is less
    # than the type in-disk (probably due to reading native HDF5
    # files written with tools allowing field padding)
    # Solves bug #23
    if H5Tget_size(native_type_id) > offset:
      H5Tset_size(native_type_id, offset)

    return desc, offset

  def _get_info(self):
    """Get info from a table on disk."""

    cdef hid_t   space_id, plist
    cdef size_t  type_size, size2
    cdef hsize_t dims[1]        # enough for unidimensional tables
    cdef hsize_t chunksize[1]
    cdef H5D_layout_t layout
    cdef bytes encoded_name

    encoded_name = self.name.encode('utf-8')

    # Open the dataset
    self.dataset_id = H5Dopen(self.parent_id, encoded_name, H5P_DEFAULT)
    if self.dataset_id < 0:
      raise HDF5ExtError("Non-existing node ``%s`` under ``%s``" %
                         (self.name, self._v_parent._v_pathname))

    # Get the datatype on disk
    self.disk_type_id = H5Dget_type(self.dataset_id)
    if H5Tget_class(self.disk_type_id) != H5T_COMPOUND:
        raise ValueError("Node ``%s`` is not a Table object" %
                         (self._v_parent._v_leaves[self.name]._v_pathname))
    # Get the number of rows
    space_id = H5Dget_space(self.dataset_id)
    H5Sget_simple_extent_dims(space_id, dims, NULL)
    self.nrows = SizeType(dims[0])
    # Free resources
    H5Sclose(space_id)

    # Get the layout of the datatype
    plist = H5Dget_create_plist(self.dataset_id)
    layout = H5Pget_layout(plist)
    if layout == H5D_CHUNKED:
      self._chunked = 1
      # Get the chunksize
      H5Pget_chunk(plist, 1, chunksize)
    else:
      self._chunked = 0
      chunksize[0] = 0
    H5Pclose(plist)

    # Get the type size
    type_size = H5Tget_size(self.disk_type_id)
    # Create the native data in-memory
    self.type_id = H5Tcreate(H5T_COMPOUND, type_size)
    # Fill-up the (nested) native type (removing the gaps!) and description
    desc, _ = self.get_nested_type(self.disk_type_id, self.type_id, "", [])
    if desc == {}:
      raise HDF5ExtError("Problems getting desciption for table %s", self.name)

    # Return the object ID and the description
    return (self.dataset_id, desc, SizeType(chunksize[0]))

  cdef _convert_time64_(self, ndarray nparr, hsize_t nrecords, int sense):
    """Converts a NumPy of Time64 elements between NumPy and HDF5 formats.

    NumPy to HDF5 conversion is performed when 'sense' is 0.  Otherwise, HDF5
    to NumPy conversion is performed.  The conversion is done in place,
    i.e. 'nparr' is modified.

    """

    cdef void *t64buf
    cdef long byteoffset, bytestride, nelements

    byteoffset = 0   # NumPy objects doesn't have an offset
    bytestride = nparr.strides[0]  # supports multi-dimensional recarray
    # Compute the number of elements in the multidimensional cell
    nelements = nparr.size // len(nparr)
    t64buf = nparr.data

    conv_float64_timeval32(
      t64buf, byteoffset, bytestride, nrecords, nelements, sense)

  cpdef _convert_types(self, ndarray recarr, hsize_t nrecords, int sense):
    """Converts columns in 'recarr' between NumPy and HDF5 formats.

    NumPy to HDF5 conversion is performed when 'sense' is 0.  Otherwise, HDF5
    to NumPy conversion is performed.  The conversion is done in place,
    i.e. 'recarr' is modified.

    """

    # For reading, first swap the byteorder by hand
    # (this is not currently supported by HDF5)
    if sense == 1:
      for colpathname in self.colpathnames:
        if self.coltypes[colpathname] in ["time32", "time64"]:
          colobj = self.coldescrs[colpathname]
          if hasattr(colobj, "_byteorder"):
            if colobj._byteorder != platform_byteorder:
              column = get_nested_field(recarr, colpathname)
              # Do an *inplace* byteswapping
              column.byteswap(True)

    # This should be generalised to support other type conversions.
    for t64cname in self._time64colnames:
      column = get_nested_field(recarr, t64cname)
      self._convert_time64_(column, nrecords, sense)

  def _open_append(self, ndarray recarr):
    self._v_recarray = <object>recarr
    # Get the pointer to the buffer data area
    self.wbuf = recarr.data

  def _append_records(self, int nrecords):
    cdef int ret
    cdef hsize_t nrows

    # Convert some NumPy types to HDF5 before storing.
    self._convert_types(self._v_recarray, nrecords, 0)

    nrows = self.nrows
    # release GIL (allow other threads to use the Python interpreter)
    with nogil:
        # Append the records:
        ret = H5TBOappend_records(self.dataset_id, self.type_id,
                                  nrecords, nrows, self.wbuf)

    if ret < 0:
      raise HDF5ExtError("Problems appending the records.")

    self.nrows = self.nrows + nrecords

  def _close_append(self):
    cdef hsize_t nrows

    if self._v_file.params['PYTABLES_SYS_ATTRS']:
      # Update the NROWS attribute
      nrows = self.nrows
      if (H5ATTRset_attribute(self.dataset_id, "NROWS", H5T_STD_I64,
                              0, NULL, <char *>&nrows) < 0):
        raise HDF5ExtError("Problems setting the NROWS attribute.")

    # Set the caches to dirty (in fact, and for the append case,
    # it should be only the caches based on limits, but anyway)
    self._dirtycache = True
    # Delete the reference to recarray as we doesn't need it anymore
    self._v_recarray = None

  def _update_records(self, hsize_t start, hsize_t stop,
                      hsize_t step, ndarray recarr):
    cdef herr_t ret
    cdef void *rbuf
    cdef hsize_t nrecords, nrows

    # Get the pointer to the buffer data area
    rbuf = recarr.data

    # Compute the number of records to update
    nrecords = len(recarr)
    nrows = get_len_of_range(start, stop, step)
    if nrecords > nrows:
      nrecords = nrows

    # Convert some NumPy types to HDF5 before storing.
    self._convert_types(recarr, nrecords, 0)
    # Update the records:
    with nogil:
        ret = H5TBOwrite_records(self.dataset_id, self.type_id,
                                 start, nrecords, step, rbuf )

    if ret < 0:
      raise HDF5ExtError("Problems updating the records.")

    # Set the caches to dirty
    self._dirtycache = True

  def _update_elements(self, hsize_t nrecords, ndarray coords,
                       ndarray recarr):
    cdef herr_t ret
    cdef void *rbuf
    cdef void *rcoords

    # Get the chunk of the coords that correspond to a buffer
    rcoords = coords.data

    # Get the pointer to the buffer data area
    rbuf = recarr.data

    # Convert some NumPy types to HDF5 before storing.
    self._convert_types(recarr, nrecords, 0)

    # Update the records:
    with nogil:
        ret = H5TBOwrite_elements(self.dataset_id, self.type_id,
                                  nrecords, rcoords, rbuf)

    if ret < 0:
      raise HDF5ExtError("Problems updating the records.")

    # Set the caches to dirty
    self._dirtycache = True

  def _read_records(self, hsize_t start, hsize_t nrecords, ndarray recarr):
    cdef void *rbuf
    cdef int ret

    # Correct the number of records to read, if needed
    if (start + nrecords) > self.nrows:
      nrecords = self.nrows - start

    # Get the pointer to the buffer data area
    rbuf = recarr.data

    # Read the records from disk
    with nogil:
        ret = H5TBOread_records(self.dataset_id, self.type_id, start,
                                nrecords, rbuf)

    if ret < 0:
      raise HDF5ExtError("Problems reading records.")

    # Convert some HDF5 types to NumPy after reading.
    self._convert_types(recarr, nrecords, 1)

    return nrecords

  cdef hsize_t _read_chunk(self, hsize_t nchunk, ndarray iobuf, long cstart):
    cdef long nslot
    cdef hsize_t start, nrecords, chunkshape
    cdef int ret
    cdef void *rbuf
    cdef NumCache chunkcache

    chunkcache = self._chunkcache
    chunkshape = chunkcache.slotsize
    # Correct the number of records to read, if needed
    start = nchunk*chunkshape
    nrecords = chunkshape
    if (start + nrecords) > self.nrows:
      nrecords = self.nrows - start
    rbuf = <char *>iobuf.data + cstart * chunkcache.itemsize
    # Try to see if the chunk is in cache
    nslot = chunkcache.getslot_(nchunk)
    if nslot >= 0:
      chunkcache.getitem_(nslot, rbuf, 0)
    else:
      # Chunk is not in cache. Read it and put it in the LRU cache.
      with nogil:
          ret = H5TBOread_records(self.dataset_id, self.type_id,
                                  start, nrecords, rbuf)

      if ret < 0:
        raise HDF5ExtError("Problems reading chunk records.")
      nslot = chunkcache.setitem_(nchunk, rbuf, 0)
    return nrecords

  def _read_elements(self, ndarray coords, ndarray recarr):
    cdef long nrecords
    cdef void *rbuf
    cdef void *rbuf2
    cdef int ret

    # Get the chunk of the coords that correspond to a buffer
    nrecords = coords.size
    # Get the pointer to the buffer data area
    rbuf = recarr.data
    # Get the pointer to the buffer coords area
    rbuf2 = coords.data

    with nogil:
        ret = H5TBOread_elements(self.dataset_id, self.type_id,
                                 nrecords, rbuf2, rbuf)

    if ret < 0:
      raise HDF5ExtError("Problems reading records.")

    # Convert some HDF5 types to NumPy after reading.
    self._convert_types(recarr, nrecords, 1)

    return nrecords

  def _remove_rows(self, hsize_t start, hsize_t stop, long step):
    cdef size_t rowsize
    cdef hsize_t nrecords, nrecords2
    cdef hsize_t i

    if step == 1:
      nrecords = stop - start
      rowsize = self.rowsize
      # Using self.disk_type_id should be faster (i.e. less conversions)
      if (H5TBOdelete_records(self.dataset_id, self.disk_type_id,
                              self.nrows, rowsize, start, nrecords,
                              self.nrowsinbuf) < 0):
        raise HDF5ExtError("Problems deleting records.")

      self.nrows = self.nrows - nrecords
      if self._v_file.params['PYTABLES_SYS_ATTRS']:
        # Attach the NROWS attribute
        nrecords2 = self.nrows
        H5ATTRset_attribute(self.dataset_id, "NROWS", H5T_STD_I64,
                            0, NULL, <char *>&nrecords2)
      # Set the caches to dirty
      self._dirtycache = True
      # Return the number of records removed
      return nrecords
    elif step == -1:
      self._remove_rows(self, stop+1, start+1, 1)
    elif step >= 1:
      # always want to go through the space backwards
      for i in range(stop - step, start - step, -step):
        self._remove_rows(self, i, i+1, 1)
    elif step <= -1:
      # always want to go through the space backwards
      for i in range(start, stop, step):
        self._remove_rows(self, i, i+1, 1)
    else:
      raise ValueError("step size may not be 0.")


cdef class Row:
  """Table row iterator and field accessor.

  Instances of this class are used to fetch and set the values
  of individual table fields.  It works very much like a dictionary,
  where keys are the pathnames or positions (extended slicing is
  supported) of the fields in the associated table in a specific row.

  This class provides an *iterator interface*
  so that you can use the same Row instance to
  access successive table rows one after the other.  There are also
  some important methods that are useful for accessing, adding and
  modifying values in tables.

  .. rubric:: Row attributes

  .. attribute:: nrow

      The current row number.

      This property is useful for knowing which row is being dealt with in the
      middle of a loop or iterator.

  """

  cdef long _row, _unsaved_nrows, _mod_nrows
  cdef hsize_t start, absstep
  cdef long long stop, step, nextelement, _nrow, stopb  # has to be long long, not hsize_t, for negative step sizes
  cdef hsize_t nrowsinbuf, nrows, nrowsread
  cdef hsize_t chunksize, nchunksinbuf, totalchunks
  cdef hsize_t startb, lenbuf
  cdef long long indexchunk
  cdef int     bufcounter, counter
  cdef int     exist_enum_cols
  cdef int     _riterator, _stride, _rowsize
  cdef int     wherecond, indexed
  cdef int     ro_filemode, chunked
  cdef int     _bufferinfo_done, sss_on
  cdef int     iterseq_max_elements
  cdef ndarray bufcoords, indexvalid, indexvalues, chunkmap
  cdef hsize_t *bufcoords_data
  cdef hsize_t *index_values_data
  cdef char    *chunkmap_data
  cdef char    *index_valid_data
  cdef object  dtype
  cdef object  iobuf, iobufcpy
  cdef object  wrec, wreccpy
  cdef object  wfields, rfields
  cdef object  coords
  cdef object  condfunc, condargs
  cdef object  mod_elements, colenums
  cdef object  rfieldscache, wfieldscache
  cdef object  _table_file, _table_path
  cdef object  modified_fields
  cdef object  seq_available

  # Deprecated API
  indexChunk = previous_api_property('indexchunk')
  indexValid = previous_api_property('indexvalid')
  indexValues = previous_api_property('indexvalues')
  bufcoordsData = previous_api_property('bufcoords_data')
  indexValuesData = previous_api_property('index_values_data')
  chunkmapData = previous_api_property('chunkmap_data')
  indexValidData = previous_api_property('index_valid_data')
  whereCond = previous_api_property('wherecond')
  iterseqMaxElements = previous_api_property('iterseq_max_elements')
  IObuf = previous_api_property('iobuf')
  IObufcpy = previous_api_property('iobufcpy')

  # The nrow() method has been converted into a property, which is handier
  property nrow:
    """The current row number.

    This property is useful for knowing which row is being dealt with in the
    middle of a loop or iterator.

    """

    def __get__(self):
      return SizeType(self._nrow)

  property table:
    def __get__(self):
        return self._table_file._get_node(self._table_path)

  def __cinit__(self, table):
    cdef int nfields, i
    # Location-dependent information.
    self._table_file = table._v_file
    self._table_path = table._v_pathname
    self._unsaved_nrows = 0
    self._mod_nrows = 0
    self._row = 0
    self._nrow = 0   # Useful in mod_append read iterators
    self._riterator = 0
    self._bufferinfo_done = 0
    # Some variables from table will be cached here
    if table._v_file.mode == 'r':
      self.ro_filemode = 1
    else:
      self.ro_filemode = 0
    self.chunked = table._chunked
    self.colenums = table._colenums
    self.exist_enum_cols = len(self.colenums)
    self.nrowsinbuf = table.nrowsinbuf
    self.chunksize = table.chunkshape[0]
    self.nchunksinbuf = self.nrowsinbuf / self.chunksize
    self.dtype = table._v_dtype
    self._new_buffer(table)
    self.mod_elements = None
    self.rfieldscache = {}
    self.wfieldscache = {}
    self.modified_fields = set()

  def _iter(self, start=0, stop=0, step=1, coords=None, chunkmap=None):
    """Return an iterator for traversiong the data in table."""
    self._init_loop(start, stop, step, coords, chunkmap)
    return iter(self)

  def __iter__(self):
    """Iterator that traverses all the data in the Table"""
    return self

  cdef _new_buffer(self, table):
    """Create the recarrays for I/O buffering"""

    wdflts = table._v_wdflts
    if wdflts is None:
      self.wrec = numpy.zeros(1, dtype=self.dtype)  # Defaults are zero
    else:
      self.wrec = table._v_wdflts.copy()
    self.wreccpy = self.wrec.copy()  # A copy of the defaults
    # Build the wfields dictionary for faster access to columns
    self.wfields = {}
    for name in self.dtype.names:
      self.wfields[name] = self.wrec[name]

    # Get the read buffer for this instance (it is private, remember!)
    buff = self.iobuf = table._get_container(self.nrowsinbuf)
    # Build the rfields dictionary for faster access to columns
    # This is quite fast, as it only takes around 5 us per column
    # in my laptop (Pentium 4 @ 2 GHz).
    # F. Alted 2006-08-18
    self.rfields = {}
    for i, name in enumerate(self.dtype.names):
      self.rfields[i] = buff[name]
      self.rfields[name] = buff[name]

    # Get the stride of these buffers
    self._stride = buff.strides[0]
    # The rowsize
    self._rowsize = self.dtype.itemsize
    self.nrows = table.nrows  # This value may change

  cdef _init_loop(self, hsize_t start, long long stop, long long step,
                 object coords, object chunkmap):
    """Initialization for the __iter__ iterator"""
    table = self.table
    self._riterator = 1   # We are inside a read iterator
    self.start = start
    self.stop = stop
    self.step = step
    self.coords = coords
    self.startb = 0
    if step > 0:
        self._row = -1  # a sentinel
        self.nrowsread = start
    elif step < 0:
        self._row = 0
        self.nrowsread = 0
        self.nextelement = start
    self._nrow = start - self.step
    self.wherecond = 0
    self.indexed = 0

    self.nrows = table.nrows   # Update the row counter

    if coords is not None and 0 < step:
      self.nrowsread = start
      self.nextelement = start
      self.stop = min(stop, len(coords))
      self.absstep = abs(step)
      return
    elif coords is not None and 0 > step:
      #self.nrowsread = 0
      #self.nextelement = start
      #self.stop = min(stop, len(coords))
      #self.stop = max(stop, start - len(coords))
      self.absstep = abs(step)
      return

    if table._where_condition:
      self.wherecond = 1
      self.condfunc, self.condargs = table._where_condition
      table._where_condition = None

    if table._use_index:
      self.indexed = 1
      # Compute totalchunks here because self.nrows can change during the
      # life of a Row instance.
      self.totalchunks = self.nrows / self.chunksize
      if self.nrows % self.chunksize:
        self.totalchunks = self.totalchunks + 1
      self.nrowsread = 0
      self.nextelement = 0
      self.chunkmap = chunkmap
      self.chunkmap_data = <char*>self.chunkmap.data
      table._use_index = False
      self.lenbuf = self.nrowsinbuf
      # Check if we have limitations on start, stop, step
      self.sss_on = (self.start > 0 or self.stop < self.nrows or self.step > 1)
      self.iterseq_max_elements = table._v_file.params['ITERSEQ_MAX_ELEMENTS']
      self.seq_available = True

  def __next__(self):
    """next() method for __iter__() that is called on each iteration"""

    if not self._riterator:
      # The iterator is already exhausted!
      raise StopIteration
    if self.indexed:
      return self.__next__indexed()
    elif self.coords is not None:
      return self.__next__coords()
    elif self.wherecond:
      return self.__next__inkernel()
    else:
      return self.__next__general()

  cdef __next__indexed(self):
    """The version of next() for indexed columns and a chunkmap."""

    cdef long recout, j, cs, vlen, rowsize
    cdef hsize_t nchunksread
    cdef object tmp_range
    cdef Table table
    cdef ndarray iobuf
    cdef void *IObufData
    cdef long nslot
    cdef object seq
    cdef ObjectCache seqcache

    assert self.nrowsinbuf >= self.chunksize
    while self.nextelement < self.stop:
      if self.nextelement >= self.nrowsread:
        # Skip until there is interesting information
        while self.start > self.nrowsread + self.nrowsinbuf:
          self.nrowsread = self.nrowsread + self.nrowsinbuf
          self.nextelement = self.nextelement + self.nrowsinbuf

        table = self.table
        iobuf = self.iobuf
        j = 0;  recout = 0;  cs = self.chunksize
        nchunksread = self.nrowsread / cs
        tmp_range = numpy.arange(0, cs, dtype='int64')
        self.bufcoords = numpy.empty(self.nrowsinbuf, dtype='int64')
        # Fetch valid chunks until the I/O buffer is full
        while nchunksread < self.totalchunks:
          if self.chunkmap_data[nchunksread]:
            self.bufcoords[j*cs:(j+1)*cs] = tmp_range + self.nrowsread
            # Not optimized read
            #  recout = recout + table._read_records(
            #    nchunksread*cs, cs, iobuf[j*cs:])
            #
            # Optimized read through the use of a chunk cache.  This cache has
            # more or less the same speed than the integrated HDF5 chunk
            # cache, but using the PyTables one has the advantage that the
            # user can easily change this parameter.
            recout = recout + table._read_chunk(nchunksread, iobuf, j*cs)
            j = j + 1
          self.nrowsread = (nchunksread+1)*cs
          if self.nrowsread > self.stop:
            self.nrowsread = self.stop
            break
          elif j == self.nchunksinbuf:
            break
          nchunksread = nchunksread + 1

        # Evaluate the condition on this table fragment.
        iobuf = iobuf[:recout]

        self.table._convert_types(iobuf, len(iobuf), 1)
        self.indexvalid = call_on_recarr(
          self.condfunc, self.condargs, iobuf)
        self.index_valid_data = <char *>self.indexvalid.data
        # Get the valid coordinates
        self.indexvalues = self.bufcoords[:recout][self.indexvalid]
        self.index_values_data = <hsize_t *>self.indexvalues.data
        self.lenbuf = self.indexvalues.size
        # Place the valid results at the beginning of the buffer
        iobuf[:self.lenbuf] = iobuf[self.indexvalid]

        # Initialize the internal buffer row counter
        self._row = -1

        # Feed the indexvalues into the seqcache
        seqcache = table._seqcache
        nslot = table._nslotseq
        # See if we have a buffer available to place results
        if nslot >= 0 and self.seq_available:
          seq = seqcache.getitem_(nslot)
          if self.lenbuf + len(seq) < self.iterseq_max_elements:
            seq.extend(self.indexvalues)
            # Update the size of sequence in cache
            # Each element in indexvalues should take at least 8 bytes
            seqcache.rsizes[nslot] = len(seq) * 8
          else:
            seqcache.removeslot_(nslot)
            self.seq_available = False

      self._row = self._row + 1
      # Check whether we have read all the rows in buf
      if self._row == self.lenbuf:
        self.nextelement = self.nrowsread
        # Make _row to point to the last valid entry in buffer
        # (this is useful for accessing the last row after an iterator loop)
        self._row = self._row - 1
        continue
      self._nrow = self.index_values_data[self._row]
      # Check additional conditions on start, stop, step params
      if self.sss_on:
        if (self._nrow < self.start or self._nrow >= self.stop):
          self.nextelement = self.nextelement + 1
          continue
        if (self.step > 1 and
            ((self._nrow - self.start) % self.step > 0)):
          self.nextelement = self.nextelement + 1
          continue
      # Return this row
      self.nextelement = self._nrow + 1
      return self
    else:
      # All the elements have been read for this mode
      self._finish_riterator()

  cdef __next__coords(self):
    """The version of next() for user-required coordinates"""
    cdef int recout
    cdef long long lenbuf, nextelement
    cdef object tmp
    if 0 < self.step:
      while self.nextelement < self.stop:
        if self.nextelement >= self.nrowsread:
          # Correction for avoiding reading past self.stop
          if self.nrowsread+self.nrowsinbuf > self.stop:
            lenbuf = self.stop-self.nrowsread
          else:
            lenbuf = self.nrowsinbuf
          tmp = self.coords[self.nrowsread:self.nrowsread+lenbuf:self.step]
          # We have to get a contiguous buffer, so numpy.array is the way to go
          self.bufcoords = numpy.array(tmp, dtype="uint64")
          self._row = -1
          if self.bufcoords.size > 0:
            recout = self.table._read_elements(self.bufcoords, self.iobuf)
          else:
            recout = 0
          self.bufcoords_data = <hsize_t*>self.bufcoords.data
          self.nrowsread = self.nrowsread + lenbuf
          if recout == 0:
            # no items were read, skip out
            continue
        self._row = self._row + 1
        self._nrow = self.bufcoords_data[self._row]
        self.nextelement = self.nextelement + self.absstep
        return self
      else:
        # All the elements have been read for this mode
        self._finish_riterator()
    elif 0 > self.step:
      #print("self.nextelement = ", self.nextelement, self.start, self.nrowsread, self.nextelement <  self.start - self.nrowsread + 1)
      while self.nextelement - 1 > self.stop:
        if self.nextelement < self.start - (<long long> self.nrowsread) + 1:
          if 0 > self.nextelement - (<long long> self.nrowsinbuf) + 1:
            tmp = self.coords[0:self.nextelement + 1]
          else:
            tmp = self.coords[self.nextelement - (<long long> self.nrowsinbuf) + 1:self.nextelement + 1]
          self.bufcoords = numpy.array(tmp, dtype="uint64")
          recout = self.table._read_elements(self.bufcoords, self.iobuf)
          self.bufcoords_data = <hsize_t*>self.bufcoords.data
          self.nrowsread = self.nrowsread + self.nrowsinbuf
          self._row = len(self.bufcoords) - 1
        else:
          self._row = (self._row + self.step) % len(self.bufcoords)

        self._nrow = self.nextelement - self.step
        self.nextelement = self.nextelement + self.step
        # Return this value
        return self
      else:
        # All the elements have been read for this mode
        self._finish_riterator()
    else:
      self._finish_riterator()

  cdef __next__inkernel(self):
    """The version of next() in case of in-kernel conditions"""

    cdef hsize_t recout, correct
    cdef object numexpr_locals, colvar, col
    self.nextelement = self._nrow + self.step
    while self.nextelement < self.stop:
      if self.nextelement >= self.nrowsread:
        # Skip until there is interesting information
        while self.nextelement >= self.nrowsread + self.nrowsinbuf:
          self.nrowsread = self.nrowsread + self.nrowsinbuf
        # Compute the end for this iteration
        self.stopb = self.stop - self.nrowsread
        if self.stopb > self.nrowsinbuf:
          self.stopb = self.nrowsinbuf
        self._row = self.startb - self.step
        # Read a chunk
        recout = self.table._read_records(self.nextelement, self.nrowsinbuf,
                                          self.iobuf)
        self.nrowsread = self.nrowsread + recout
        self.indexchunk = -self.step

        # Evaluate the condition on this table fragment.
        self.indexvalid = call_on_recarr(
          self.condfunc, self.condargs, self.iobuf[:recout] )
        self.index_valid_data = <char *>self.indexvalid.data

        # Is there any interesting information in this buffer?
        if not numpy.sometrue(self.indexvalid):
          # No, so take the next one
          if self.step >= self.nrowsinbuf:
            self.nextelement = self.nextelement + self.step
          else:
            self.nextelement = self.nextelement + self.nrowsinbuf
            # Correction for step size > 1
            if self.step > 1:
              correct = (self.nextelement - self.start) % self.step
              self.nextelement = self.nextelement - correct
          continue

      self._row = self._row + self.step
      self._nrow = self.nextelement
      if self._row + self.step >= self.stopb:
        # Compute the start row for the next buffer
        self.startb = 0

      self.nextelement = self._nrow + self.step
      # Return only if this value is interesting
      self.indexchunk = self.indexchunk + self.step
      if self.index_valid_data[self.indexchunk]:
        return self
    else:
      self._finish_riterator()

  cdef __next__general(self):
    """The version of next() for the general cases"""
    cdef int recout
    if 0 < self.step:
      self.nextelement = self._nrow + self.step
      while self.nextelement < self.stop:
        if self.nextelement >= self.nrowsread:
          # Skip until there is interesting information
          while self.nextelement >= self.nrowsread + self.nrowsinbuf:
            self.nrowsread = self.nrowsread + self.nrowsinbuf
          # Compute the end for this iteration
          self.stopb = self.stop - self.nrowsread
          if self.stopb > self.nrowsinbuf:
            self.stopb = self.nrowsinbuf
          self._row = self.startb - self.step
          # Read a chunk
          recout = self.table._read_records(self.nrowsread, self.nrowsinbuf,
                                            self.iobuf)
          self.nrowsread = self.nrowsread + recout

        self._row = self._row + self.step
        self._nrow = self.nextelement
        if self._row + self.step >= self.stopb:
          # Compute the start row for the next buffer
          self.startb = (self._row + self.step) % self.nrowsinbuf

        self.nextelement = self._nrow + self.step
        # Return this value
        return self
      else:
        self._finish_riterator()
    elif 0 > self.step:
      self.stopb = -1
      while self.nextelement - 1 > self.stop:
        if self.nextelement < self.start - self.nrowsread + 1:
          # Read a chunk
          recout = self.table._read_records(self.nextelement - self.nrowsinbuf + 1,
                                            self.nrowsinbuf, self.iobuf)
          self.nrowsread = self.nrowsread + self.nrowsinbuf
          self._row = self.nrowsinbuf - 1
        else:
          self._row = (self._row + self.step) % self.nrowsinbuf

        self._nrow = self.nextelement - self.step
        self.nextelement = self.nextelement + self.step
        # Return this value
        return self
      else:
        self._finish_riterator()

  cdef _finish_riterator(self):
    """Clean-up things after iterator has been done"""

    self.rfieldscache = {}     # empty rfields cache
    self.wfieldscache = {}     # empty wfields cache
    # Make a copy of the last read row in the private record
    # (this is useful for accessing the last row after an iterator loop)
    if self._row >= 0:
      self.wrec[:] = self.iobuf[self._row]
    self._riterator = 0        # out of iterator
    if self._mod_nrows > 0:    # Check if there is some modified row
      self._flush_mod_rows()     # Flush any possible modified row
    self.modified_fields = set()  # Empty the set of modified fields
    raise StopIteration        # end of iteration

  def _fill_col(self, result, start, stop, step, field):
    """Read a field from a table on disk and put the result in result"""

    cdef hsize_t startr, istartb
    cdef hsize_t istart, inrowsinbuf, inextelement
    cdef long long stopr, istopb, i, j, inrowsread
    cdef long long istop, istep
    cdef object fields

    # We can't reuse existing buffers in this context
    self._init_loop(start, stop, step, None, None)
    istart, istop, istep = (self.start, self.stop, self.step)
    inrowsinbuf, inextelement, inrowsread = (self.nrowsinbuf, istart, istart)
    istartb, startr = (self.startb, 0)
    i = istart
    if 0 < istep:
      while i < istop:
        if (inextelement >= inrowsread + inrowsinbuf):
          inrowsread = inrowsread + inrowsinbuf
          i = i + inrowsinbuf
          continue
        # Compute the end for this iteration
        istopb = istop - inrowsread
        if istopb > inrowsinbuf:
          istopb = inrowsinbuf
        stopr = startr + ((istopb - istartb - 1) / istep) + 1
        # Read a chunk
        inrowsread = inrowsread + self.table._read_records(i, inrowsinbuf,
                                                           self.iobuf)
        # Assign the correct part to result
        fields = self.iobuf
        if field:
          fields = get_nested_field(fields, field)
        result[startr:stopr] = fields[istartb:istopb:istep]

        # Compute some indexes for the next iteration
        startr = stopr
        j = istartb + ((istopb - istartb - 1) / istep) * istep
        istartb = (j+istep) % inrowsinbuf
        inextelement = inextelement + istep
        i = i + inrowsinbuf
    elif 0 > istep:
      inrowsinbuf = self.nrowsinbuf
      #istartb = self.startb
      istartb = self.nrowsinbuf - 1
      #istopb = self.stopb - 1
      istopb = -1
      startr = 0
      i = istart
      inextelement = istart
      inrowsread = 0
      while i-1 > istop:
        #if (inextelement <= inrowsread + inrowsinbuf):
        if (inextelement < i - inrowsinbuf):
          inrowsread = inrowsread + inrowsinbuf
          i = i - inrowsinbuf
          continue
        # Compute the end for this iteration
        stopr = startr + ((istopb - istartb - 1) / istep)
        # Read a chunk
        inrowsread = inrowsread + self.table._read_records(i - inrowsinbuf + 1,
                                                           inrowsinbuf, self.iobuf)
        # Assign the correct part to result
        fields = self.iobuf
        if field:
          fields = get_nested_field(fields, field)
        if istopb >= 0:
            result[startr:stopr] = fields[istartb:istopb:istep]
        else:
            result[startr:stopr] = fields[istartb::istep]

        # Compute some indexes for the next iteration
        startr = stopr
        istartb = (i - istartb)%inrowsinbuf
        inextelement = inextelement + istep
        i = i - inrowsinbuf
    self._riterator = 0  # out of iterator
    return

  _fillCol = previous_api(_fill_col)

  def append(self):
    """Add a new row of data to the end of the dataset.

    Once you have filled the proper fields for the current
    row, calling this method actually appends the new data to the
    *output buffer* (which will eventually be
    dumped to disk).  If you have not set the value of a field, the
    default value of the column will be used.

    .. warning::

        After completion of the loop in which :meth:`Row.append` has
        been called, it is always convenient to make a call to
        :meth:`Table.flush` in order to avoid losing the last rows that
        may still remain in internal buffers.

    Examples
    --------

    ::

        row = table.row
        for i in xrange(nrows):
            row['col1'] = i-1
            row['col2'] = 'a'
            row['col3'] = -1.0
            row.append()
        table.flush()

    """
    cdef ndarray iobuf, wrec, wreccpy

    if self.ro_filemode:
      raise IOError("Attempt to write over a file opened in read-only mode")

    if not self.chunked:
      raise HDF5ExtError("You cannot append rows to a non-chunked table.",
                         h5tb=False)

    if self._riterator:
      raise NotImplementedError("You cannot append rows when in middle of a table iterator. If what you want is to update records, use Row.update() instead.")

    # Commit the private record into the write buffer
    # self.iobuf[self._unsaved_nrows] = self.wrec
    # The next is faster
    iobuf = <ndarray>self.iobuf; wrec = <ndarray>self.wrec
    memcpy(iobuf.data + self._unsaved_nrows * self._stride,
           wrec.data, self._rowsize)
    # Restore the defaults for the private record
    # self.wrec[:] = self.wreccpy
    # The next is faster
    wreccpy = <ndarray>self.wreccpy
    memcpy(wrec.data, wreccpy.data, self._rowsize)
    self._unsaved_nrows = self._unsaved_nrows + 1
    # When the buffer is full, flush it
    if self._unsaved_nrows == self.nrowsinbuf:
      self._flush_buffered_rows()

  def _flush_buffered_rows(self):
    if self._unsaved_nrows > 0:
      self.table._save_buffered_rows(self.iobuf, self._unsaved_nrows)
      # Reset the buffer unsaved counter
      self._unsaved_nrows = 0

  _flushBufferedRows = previous_api(_flush_buffered_rows)

  def _get_unsaved_nrows(self):
    return self._unsaved_nrows

  _getUnsavedNrows = previous_api(_get_unsaved_nrows)

  def update(self):
    """Change the data of the current row in the dataset.

    This method allows you to modify values in a table when you are in the
    middle of a table iterator like :meth:`Table.iterrows` or
    :meth:`Table.where`.

    Once you have filled the proper fields for the current row, calling
    this method actually changes data in the *output buffer* (which will
    eventually be dumped to disk).  If you have not set the value of a
    field, its original value will be used.

    .. warning::

        After completion of the loop in which :meth:`Row.update` has
        been called, it is always convenient to make a call to
        :meth:`Table.flush` in order to avoid losing changed rows that
        may still remain in internal buffers.

    Examples
    --------

    ::

        for row in table.iterrows(step=10):
            row['col1'] = row.nrow
            row['col2'] = 'b'
            row['col3'] = 0.0
            row.update()
        table.flush()

    which modifies every tenth row in table.  Or::

        for row in table.where('col1 > 3'):
            row['col1'] = row.nrow
            row['col2'] = 'b'
            row['col3'] = 0.0
            row.update()
        table.flush()

    which just updates the rows with values bigger than 3 in the first
    column.

    """

    cdef ndarray iobufcpy, iobuf

    if self.ro_filemode:
      raise IOError("Attempt to write over a file opened in read-only mode")

    if not self._riterator:
      raise NotImplementedError("You are only allowed to update rows through the Row.update() method if you are in the middle of a table iterator.")

    if self.mod_elements is None:
      # Initialize an array for keeping the modified elements
      # (just in case Row.update() would be used)
      self.mod_elements = numpy.empty(shape=self.nrowsinbuf, dtype=SizeType)
      # We need a different copy for self.iobuf here
      self.iobufcpy = self.iobuf.copy()

    # Add this row to the list of elements to be modified
    self.mod_elements[self._mod_nrows] = self._nrow
    # Copy the current buffer row in input to the output buffer
    # self.iobufcpy[self._mod_nrows] = self.iobuf[self._row]
    # The next is faster
    iobufcpy = <ndarray>self.iobufcpy; iobuf = <ndarray>self.iobuf
    memcpy(iobufcpy.data + self._mod_nrows * self._stride,
           iobuf.data + self._row * self._stride, self._rowsize)
    # Increase the modified buffer count by one
    self._mod_nrows = self._mod_nrows + 1
    # When the buffer is full, flush it
    if self._mod_nrows == self.nrowsinbuf:
      self._flush_mod_rows()

  def _flush_mod_rows(self):
    """Flush any possible modified row using Row.update()"""

    table = self.table
    # Save the records on disk
    table._update_elements(self._mod_nrows, self.mod_elements, self.iobufcpy)
    # Reset the counter of modified rows to 0
    self._mod_nrows = 0
    # Mark the modified fields' indexes as dirty.
    table._mark_columns_as_dirty(self.modified_fields)

  _flushModRows = previous_api(_flush_mod_rows)

  def __contains__(self, item):
    """__contains__(item)

    A true value is returned if item is found in current row, false
    otherwise.

    """

    return item in self.fetch_all_fields()

  # This method is twice as faster than __getattr__ because there is
  # not a lookup in the local dictionary
  def __getitem__(self, key):
    """__getitem__(key)

    Get the row field specified by the `key`.

    The key can be a string (the name of the field), an integer (the
    position of the field) or a slice (the range of field positions). When
    key is a slice, the returned value is a *tuple* containing the values
    of the specified fields.

    Examples
    --------

    ::

        res = [row['var3'] for row in table.where('var2 < 20')]

    which selects the var3 field for all the rows that fulfil the
    condition. Or::

        res = [row[4] for row in table if row[1] < 20]

    which selects the field in the *4th* position for all the rows that
    fulfil the condition. Or::

        res = [row[:] for row in table if row['var2'] < 20]

    which selects the all the fields (in the form of a *tuple*) for all the
    rows that fulfil the condition. Or::

        res = [row[1::2] for row in table.iterrows(2, 3000, 3)]

    which selects all the fields in even positions (in the form of a
    *tuple*) for all the rows in the slice [2:3000:3].

    """

    cdef long offset
    cdef ndarray field
    cdef object row, fields, fieldscache

    if self._riterator:
      # If in the middle of an iterator loop, the user probably wants to
      # access the read buffer
      fieldscache = self.rfieldscache; fields = self.rfields
      offset = <long>self._row
    else:
      # We are not in an iterator loop, so the user probably wants to access
      # the write buffer
      fieldscache = self.wfieldscache; fields = self.wfields
      offset = 0

    try:
      # Check whether this object is in the cache dictionary
      field = fieldscache[key]
    except (KeyError, TypeError):
      try:
        # Try to get it from fields (str or int keys)
        field = get_nested_field_cache(fields, key, fieldscache)
      except TypeError:
        # No luck yet. Still, the key can be a slice.
        # Fetch the complete row and convert it into a tuple
        if self._riterator:
          row = self.iobuf[self._row].copy().item()
        else:
          row = self.wrec[0].copy().item()
        # Try with __getitem__()
        return row[key]

    if field.ndim == 1:
      # For an scalar it is not needed a copy (immutable object)
      return PyArray_GETITEM(field, field.data + offset * self._stride)
    else:
      # Do a copy of the array, so that it can be overwritten by the user
      # without damaging the internal self.rfields buffer
      return field[offset].copy()

  # This is slightly faster (around 3%) than __setattr__
  def __setitem__(self, object key, object value):
    """__setitem__(key, value)

    Set the key row field to the specified value.

    Differently from its __getitem__() counterpart, in this case key can
    only be a string (the name of the field). The changes done via
    __setitem__() will not take effect on the data on disk until any of the
    :meth:`Row.append` or :meth:`Row.update` methods are called.

    Examples
    --------

    ::

        for row in table.iterrows(step=10):
            row['col1'] = row.nrow
            row['col2'] = 'b'
            row['col3'] = 0.0
            row.update()
        table.flush()

    which modifies every tenth row in the table.

    """

    cdef int ret
    cdef long offset
    cdef ndarray field
    cdef object fields, fieldscache

    if self.ro_filemode:
      raise IOError("attempt to write over a file opened in read-only mode")

    if self._riterator:
      # If in the middle of an iterator loop, or *after*, the user
      # probably wants to access the read buffer
      fieldscache = self.rfieldscache; fields = self.rfields
      offset = <long>self._row
    else:
      # We are not in an iterator loop, so the user probably wants to access
      # the write buffer
      fieldscache = self.wfieldscache; fields = self.wfields
      offset = 0

    # Check validity of enumerated value.
    if self.exist_enum_cols:
      if key in self.colenums:
        enum = self.colenums[key]
        for cenval in numpy.asarray(value).flat:
          enum(cenval)  # raises ``ValueError`` on invalid values

    # Get the field to be modified
    field = get_nested_field_cache(fields, key, fieldscache)
    if key not in self.modified_fields:
      self.modified_fields.add(key)

    # Finally, try to set it to the value
    try:
      # Optimization for scalar values. This can optimize the writes
      # between a 10% and 100%, depending on the number of columns modified
      if field.ndim == 1:
        ret = PyArray_SETITEM(field, field.data + offset * self._stride, value)
        if ret < 0:
          raise TypeError
      ##### End of optimization for scalar values
      else:
        field[offset] = value
    except TypeError:
      raise TypeError("invalid type (%s) for column ``%s``" % (type(value),
                                                               key))

  def fetch_all_fields(self):
    """Retrieve all the fields in the current row.

    Contrarily to row[:] (see :ref:`RowSpecialMethods`), this returns row
    data as a NumPy void scalar.  For instance::

        [row.fetch_all_fields() for row in table.where('col1 < 3')]

    will select all the rows that fulfill the given condition
    as a list of NumPy records.

    """

    # We need to do a cast for recognizing negative row numbers!
    if <signed long long>self._nrow < 0:
      return ("Warning: Row iterator has not been initialized for table:\n"
              "  %s\n"
              " You will normally want to use this method in iterator "
              "contexts." % self.table)

    # Always return a copy of the row so that new data that is written
    # in self.iobuf doesn't overwrite the original returned data.
    return self.iobuf[self._row].copy()

  def __str__(self):
    """Represent the record as an string"""

    # We need to do a cast for recognizing negative row numbers!
    if <signed long long>self._nrow < 0:
      return ("Warning: Row iterator has not been initialized for table:\n"
              "  %s\n"
              " You will normally want to use this object in iterator "
              "contexts." % self.table)

    tablepathname = self.table._v_pathname
    classname = self.__class__.__name__
    return "%s.row (%s), pointing to row #%d" %  (tablepathname, classname,
                                                  self._nrow)

  def __repr__(self):
    """Represent the record as an string"""

    return str(self)

## Local Variables:
## mode: python
## py-indent-offset: 2
## tab-width: 2
## fill-column: 78
## End: