1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
"""Small but quite comprehensive example showing the use of PyTables.
The program creates an output file, 'tutorial1.h5'. You can view it
with any HDF5 generic utility.
"""
from __future__ import print_function
import os
import traceback
SECTION = "I HAVE NO TITLE"
def tutsep():
print('----8<----', SECTION, '----8<----')
def tutprint(obj):
tutsep()
print(obj)
def tutrepr(obj):
tutsep()
print(repr(obj))
def tutexc():
tutsep()
traceback.print_exc(file=sys.stdout)
SECTION = "Importing tables objects"
from numpy import *
from tables import *
SECTION = "Declaring a Column Descriptor"
# Define a user record to characterize some kind of particles
class Particle(IsDescription):
name = StringCol(16) # 16-character String
idnumber = Int64Col() # Signed 64-bit integer
ADCcount = UInt16Col() # Unsigned short integer
TDCcount = UInt8Col() # unsigned byte
grid_i = Int32Col() # integer
grid_j = IntCol() # integer (equivalent to Int32Col)
pressure = Float32Col() # float (single-precision)
energy = FloatCol() # double (double-precision)
SECTION = "Creating a PyTables file from scratch"
# Open a file in "w"rite mode
h5file = open_file('tutorial1.h5', mode="w", title="Test file")
SECTION = "Creating a new group"
# Create a new group under "/" (root)
group = h5file.create_group("/", 'detector', 'Detector information')
SECTION = "Creating a new table"
# Create one table on it
table = h5file.create_table(group, 'readout', Particle, "Readout example")
tutprint(h5file)
tutrepr(h5file)
# Get a shortcut to the record object in table
particle = table.row
# Fill the table with 10 particles
for i in range(10):
particle['name'] = 'Particle: %6d' % (i)
particle['TDCcount'] = i % 256
particle['ADCcount'] = (i * 256) % (1 << 16)
particle['grid_i'] = i
particle['grid_j'] = 10 - i
particle['pressure'] = float(i*i)
particle['energy'] = float(particle['pressure'] ** 4)
particle['idnumber'] = i * (2 ** 34)
# Insert a new particle record
particle.append()
# Flush the buffers for table
table.flush()
SECTION = "Reading (and selecting) data in a table"
# Read actual data from table. We are interested in collecting pressure values
# on entries where TDCcount field is greater than 3 and pressure less than 50
table = h5file.root.detector.readout
pressure = [
x['pressure'] for x in table
if x['TDCcount'] > 3 and 20 <= x['pressure'] < 50
]
tutrepr(pressure)
# Read also the names with the same cuts
names = [
x['name'] for x in table
if x['TDCcount'] > 3 and 20 <= x['pressure'] < 50
]
tutrepr(names)
SECTION = "Creating new array objects"
gcolumns = h5file.create_group(h5file.root, "columns", "Pressure and Name")
tutrepr(
h5file.create_array(gcolumns, 'pressure', array(pressure),
"Pressure column selection")
)
tutrepr(
h5file.create_array('/columns', 'name', names, "Name column selection")
)
tutprint(h5file)
SECTION = "Closing the file and looking at its content"
# Close the file
h5file.close()
tutsep()
os.system('h5ls -rd tutorial1.h5')
tutsep()
os.system('ptdump tutorial1.h5')
"""This example shows how to browse the object tree and enlarge tables.
Before to run this program you need to execute first tutorial1-1.py
that create the tutorial1.h5 file needed here.
"""
SECTION = "Traversing the object tree"
# Reopen the file in append mode
h5file = open_file("tutorial1.h5", "a")
# Print the object tree created from this filename
# List all the nodes (Group and Leaf objects) on tree
tutprint(h5file)
# List all the nodes (using File iterator) on tree
tutsep()
for node in h5file:
print(node)
# Now, only list all the groups on tree
tutsep()
for group in h5file.walk_groups("/"):
print(group)
# List only the arrays hanging from /
tutsep()
for group in h5file.walk_groups("/"):
for array in h5file.list_nodes(group, classname='Array'):
print(array)
# This gives the same result
tutsep()
for array in h5file.walk_nodes("/", "Array"):
print(array)
# And finally, list only leafs on /detector group (there should be one!)
# Other way using iterators and natural naming
tutsep()
for leaf in h5file.root.detector('Leaf'):
print(leaf)
SECTION = "Setting and getting user attributes"
# Get a pointer to '/detector/readout'
table = h5file.root.detector.readout
# Attach it a string (date) attribute
table.attrs.gath_date = "Wed, 06/12/2003 18:33"
# Attach a floating point attribute
table.attrs.temperature = 18.4
table.attrs.temp_scale = "Celsius"
# Get a pointer to '/detector'
detector = h5file.root.detector
# Attach a general object to the parent (/detector) group
detector._v_attrs.stuff = [5, (2.3, 4.5), "Integer and tuple"]
# Now, get the attributes
tutrepr(table.attrs.gath_date)
tutrepr(table.attrs.temperature)
tutrepr(table.attrs.temp_scale)
tutrepr(detector._v_attrs.stuff)
# Delete permanently the attribute gath_date of /detector/readout
del table.attrs.gath_date
# Print a representation of all attributes in /detector/table
tutrepr(table.attrs)
# Get the (user) attributes of /detector/table
tutprint(table.attrs._f_list("user"))
# Get the (sys) attributes of /detector/table
tutprint(table.attrs._f_list("sys"))
# Rename an attribute
table.attrs._f_rename("temp_scale", "tempScale")
tutprint(table.attrs._f_list())
# Try to rename a system attribute:
try:
table.attrs._f_rename("VERSION", "version")
except:
tutexc()
h5file.flush()
tutsep()
os.system('h5ls -vr tutorial1.h5/detector/readout')
SECTION = "Getting object metadata"
# Get metadata from table
tutsep()
print("Object:", table)
tutsep()
print("Table name:", table.name)
tutsep()
print("Table title:", table.title)
tutsep()
print("Number of rows in table:", table.nrows)
tutsep()
print("Table variable names with their type and shape:")
tutsep()
for name in table.colnames:
print(name, ':= %s, %s' % (table.coltypes[name], table.colshapes[name]))
tutprint(table.__doc__)
# Get the object in "/columns pressure"
pressureObject = h5file.get_node("/columns", "pressure")
# Get some metadata on this object
tutsep()
print("Info on the object:", repr(pressureObject))
tutsep()
print(" shape: ==>", pressureObject.shape)
tutsep()
print(" title: ==>", pressureObject.title)
tutsep()
print(" type: ==>", pressureObject.type)
SECTION = "Reading data from Array objects"
# Read the 'pressure' actual data
pressureArray = pressureObject.read()
tutrepr(pressureArray)
tutsep()
print("pressureArray is an object of type:", type(pressureArray))
# Read the 'name' Array actual data
nameArray = h5file.root.columns.name.read()
tutrepr(nameArray)
print("nameArray is an object of type:", type(nameArray))
# Print the data for both arrays
tutprint("Data on arrays nameArray and pressureArray:")
tutsep()
for i in range(pressureObject.shape[0]):
print(nameArray[i], "-->", pressureArray[i])
tutrepr(pressureObject.name)
SECTION = "Appending data to an existing table"
# Create a shortcut to table object
table = h5file.root.detector.readout
# Get the object row from table
particle = table.row
# Append 5 new particles to table
for i in range(10, 15):
particle['name'] = 'Particle: %6d' % (i)
particle['TDCcount'] = i % 256
particle['ADCcount'] = (i * 256) % (1 << 16)
particle['grid_i'] = i
particle['grid_j'] = 10 - i
particle['pressure'] = float(i*i)
particle['energy'] = float(particle['pressure'] ** 4)
particle['idnumber'] = i * (2 ** 34) # This exceeds long integer range
particle.append()
# Flush this table
table.flush()
# Print the data using the table iterator:
tutsep()
for r in table:
print("%-16s | %11.1f | %11.4g | %6d | %6d | %8d |" % \
(r['name'], r['pressure'], r['energy'], r['grid_i'], r['grid_j'],
r['TDCcount']))
# Delete some rows on the Table (yes, rows can be removed!)
tutrepr(table.remove_rows(5, 10))
# Close the file
h5file.close()
|