1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
|
# -*- coding: utf-8 -*-
########################################################################
#
# License: BSD
# Created: November 8, 2014
# Author: Alistair Muldal - alimuldal@gmail.com
#
# $Id$
#
########################################################################
"""This utility prints the contents of an HDF5 file as a tree.
Pass the flag -h to this for help on usage.
"""
from __future__ import absolute_import
from __future__ import print_function
import tables
import numpy as np
import os
import argparse
from collections import defaultdict, deque
import warnings
from six.moves import zip
def _get_parser():
parser = argparse.ArgumentParser(
description='''
`pttree` is designed to give a quick overview of the contents of a
PyTables HDF5 file by printing a depth-indented list of nodes, similar
to the output of the Unix `tree` function.
It can also display the size, shape and compression states of
individual nodes, as well as summary information for the whole file.
For a more verbose output (including metadata), see `ptdump`.
''')
parser.add_argument(
'-L', '--max-level', type=int, dest='max_depth',
help='maximum branch depth of tree to display (-1 == no limit)',
)
parser.add_argument(
'-S', '--sort-by', type=str, dest='sort_by',
help='artificially order nodes, can be either "size", "name" or "none"'
)
parser.add_argument(
'--print-size', action='store_true', dest='print_size',
help='print size of each node/branch',
)
parser.add_argument(
'--no-print-size', action='store_false', dest='print_size',
)
parser.add_argument(
'--print-shape', action='store_true', dest='print_shape',
help='print shape of each node',
)
parser.add_argument(
'--no-print-shape', action='store_false', dest='print_shape',
)
parser.add_argument(
'--print-compression', action='store_true', dest='print_compression',
help='print compression library(level) for each compressed node',
)
parser.add_argument(
'--no-print-compression', action='store_false',
dest='print_compression',
)
parser.add_argument(
'--print-percent', action='store_true', dest='print_percent',
help='print size of each node as a %% of the total tree size on disk',
)
parser.add_argument(
'--no-print-percent', action='store_false',
dest='print_percent',
)
parser.add_argument(
'--use-si-units', action='store_true', dest='use_si_units',
help='report sizes in SI units (1 MB == 10^6 B)',
)
parser.add_argument(
'--use-binary-units', action='store_false', dest='use_si_units',
help='report sizes in binary units (1 MiB == 2^20 B)',
)
parser.add_argument('src', metavar='filename[:nodepath]',
help='path to the root of the tree structure')
parser.set_defaults(max_depth=1, sort_by="size", print_size=True,
print_percent=True, print_shape=False,
print_compression=False, use_si_units=False)
return parser
def main():
parser = _get_parser()
args = parser.parse_args()
# Catch the files passed as the last arguments
src = args.__dict__.pop('src').split(':')
if len(src) == 1:
filename, nodename = src[0], "/"
else:
filename, nodename = src
if nodename == "":
# case where filename == "filename:" instead of "filename:/"
nodename = "/"
with tables.open_file(filename, 'r') as f:
tree_str = get_tree_str(f, nodename, **args.__dict__)
print(tree_str)
pass
def get_tree_str(f, where='/', max_depth=-1, print_class=True,
print_size=True, print_percent=True, print_shape=False,
print_compression=False, print_total=True, sort_by=None,
use_si_units=False):
"""
Generate the ASCII string representing the tree structure, and the summary
info (if requested)
"""
root = f.get_node(where)
root._g_check_open()
start_depth = root._v_depth
if max_depth < 0:
max_depth = os.sys.maxint
b2h = bytes2human(use_si_units)
# we will pass over each node in the tree twice
# on the first pass we'll start at the root node and recurse down the
# branches, finding all of the leaf nodes and calculating the total size
# over all tables and arrays
total_in_mem = 0
total_on_disk = 0
total_items = 0
# defaultdicts for holding the cumulative branch sizes at each node
in_mem = defaultdict(lambda: 0.)
on_disk = defaultdict(lambda: 0.)
leaf_count = defaultdict(lambda: 0)
# keep track of node addresses within the HDF5 file so that we don't count
# nodes with multiple references (i.e. hardlinks) multiple times
ref_count = defaultdict(lambda: 0)
ref_idx = defaultdict(lambda: 0)
hl_addresses = defaultdict(lambda: None)
hl_targets = defaultdict(lambda: '')
stack = deque(root)
leaves = deque()
while stack:
node = stack.pop()
if isinstance(node, tables.link.Link):
# we treat links like leaves, except we don't dereference them to
# get their sizes or addresses
leaves.append(node)
continue
path = node._v_pathname
addr, rc = node._get_obj_info()
ref_count[addr] += 1
ref_idx[path] = ref_count[addr]
hl_addresses[path] = addr
if isinstance(node, tables.Leaf):
# only count the size of a hardlinked leaf the first time it is
# visited
if ref_count[addr] == 1:
try:
m = node.size_in_memory
d = node.size_on_disk
# size of this node
in_mem[path] += m
on_disk[path] += d
leaf_count[path] += 1
# total over all nodes
total_in_mem += m
total_on_disk += d
total_items += 1
# arbitrarily treat this node as the 'target' for all other
# hardlinks that point to the same address
hl_targets[addr] = path
except NotImplementedError as e:
# size_on_disk is not implemented for VLArrays
warnings.warn(e.message)
# push leaf nodes onto the stack for the next pass
leaves.append(node)
elif isinstance(node, tables.Group):
# don't recurse down the same hardlinked branch multiple times!
if ref_count[addr] == 1:
stack.extend(list(node._v_children.values()))
hl_targets[addr] = path
# if we've already visited this group's address, treat it as a leaf
# instead
else:
leaves.append(node)
# on the second pass we start at each leaf and work upwards towards the
# root node, computing the cumulative size of each branch at each node, and
# instantiating a PrettyTree object for each node to create an ASCII
# representation of the tree structure
# this will store the PrettyTree objects for every node we're printing
pretty = {}
stack = leaves
while stack:
node = stack.pop()
path = node._v_pathname
parent = node._v_parent
parent_path = parent._v_pathname
# cumulative size at parent node
in_mem[parent_path] += in_mem[path]
on_disk[parent_path] += on_disk[path]
leaf_count[parent_path] += leaf_count[path]
depth = node._v_depth - start_depth
# if we're deeper than the max recursion depth, we print nothing
if not depth > max_depth:
# create a PrettyTree representation of this node
name = node._v_name
if print_class:
name += " (%s)" % node.__class__.__name__
labels = []
pct = 100 * on_disk[path] / total_on_disk
# if the address of this object has a ref_count > 1, it has
# multiple hardlinks
if ref_count[hl_addresses[path]] > 1:
name += ', addr=%i, ref=%i/%i' % (
hl_addresses[path], ref_idx[path],
ref_count[hl_addresses[path]]
)
if isinstance(node, tables.link.Link):
labels.append('softlink --> %s' % node.target)
elif ref_idx[path] > 1:
labels.append('hardlink --> %s'
% hl_targets[hl_addresses[path]])
elif isinstance(node, (tables.Array, tables.Table)):
if print_size:
sizestr = 'mem=%s, disk=%s' % (
b2h(in_mem[path]), b2h(on_disk[path]))
if print_percent:
sizestr += ' [%4.1f%%]' % pct
labels.append(sizestr)
if print_shape:
labels.append('shape=%s' % repr(node.shape))
if print_compression:
lib = node.filters.complib
level = node.filters.complevel
if level:
compstr = '%s(%i)' % (lib, level)
else:
compstr = 'None'
labels.append('compression=%s' % compstr)
# if we're at our max recursion depth, we'll print summary
# information for this branch
elif depth == max_depth:
itemstr = '... %i leaves' % leaf_count[path]
if print_size:
itemstr += ', mem=%s, disk=%s' % (
b2h(in_mem[path]), b2h(on_disk[path]))
if print_percent:
itemstr += ' [%4.1f%%]' % pct
labels.append(itemstr)
# create a PrettyTree for this node, if one doesn't exist already
if path not in pretty:
pretty.update({path: PrettyTree()})
pretty[path].name = name
pretty[path].labels = labels
if sort_by == 'size':
# descending size order
pretty[path].sort_by = -pct
elif sort_by == 'name':
pretty[path].sort_by = node._v_name
else:
# natural order
if path is '/':
# root is not in root._v_children
pretty[path].sort_by = 0
else:
pretty[path].sort_by = list(parent._v_children.values(
)).index(node)
# exclude root node or we'll get infinite recursions (since '/' is
# the parent of '/')
if path is not '/':
# create a PrettyTree for the parent of this node, if one
# doesn't exist already
if parent_path not in pretty:
pretty.update({parent_path: PrettyTree()})
# make this PrettyTree a child of the parent PrettyTree
pretty[parent_path].add_child(pretty[path])
if node is not root and parent not in stack:
# we append to the 'bottom' of the stack, so that we exhaust all of
# the nodes at this level before going up a level in the tree
stack.appendleft(parent)
out_str = '\n' + '-' * 60 + '\n' * 2
out_str += str(pretty[root._v_pathname]) + '\n' * 2
if print_total:
avg_ratio = float(total_on_disk) / total_in_mem
fsize = os.stat(f.filename).st_size
out_str += '-' * 60 + '\n'
out_str += 'Total branch leaves: %i\n' % total_items
out_str += 'Total branch size: %s in memory, %s on disk\n' % (
b2h(total_in_mem), b2h(total_on_disk))
out_str += 'Mean compression ratio: %.2f\n' % avg_ratio
out_str += 'HDF5 file size: %s\n' % b2h(fsize)
out_str += '-' * 60 + '\n'
return out_str
class PrettyTree(object):
"""
A pretty ASCII representation of a recursive tree structure. Each node can
have multiple labels, given as a list of strings.
Example:
--------
A = PrettyTree('A', labels=['wow'])
B = PrettyTree('B', labels=['such tree'])
C = PrettyTree('C', children=[A, B])
D = PrettyTree('D', labels=['so recursive'])
root = PrettyTree('root', labels=['many nodes'], children=[C, D])
print root
Credit to Andrew Cooke's blog:
<http://www.acooke.org/cute/ASCIIDispl0.html>
"""
def __init__(self, name=None, children=None, labels=None, sort_by=None):
# NB: do NOT assign default list/dict arguments in the function
# declaration itself - these objects are shared between ALL instances
# of PrettyTree, and by assigning to them it's easy to get into
# infinite recursions, e.g. when 'self in self.children == True'
if children is None:
children = []
if labels is None:
labels = []
self.name = name
self.children = children
self.labels = labels
self.sort_by = sort_by
def add_child(self, child):
# some basic checks to help to avoid infinite recursion
assert child is not self
assert self not in child.children
if child not in self.children:
self.children.append(child)
def tree_lines(self):
yield self.name
for label in self.labels:
yield ' ' + label
children = sorted(self.children, key=(lambda c: c.sort_by))
last = children[-1] if children else None
for child in children:
prefix = '`--' if child is last else '+--'
for line in child.tree_lines():
yield prefix + line
prefix = ' ' if child is last else '| '
def __str__(self):
return "\n".join(self.tree_lines())
def __repr__(self):
return '<%s at %s>' % (self.__class__.__name__, hex(id(self)))
def bytes2human(use_si_units=False):
if use_si_units:
prefixes = 'TB', 'GB', 'MB', 'kB', 'B'
values = 1E12, 1E9, 1E6, 1E3, 1
else:
prefixes = 'TiB', 'GiB', 'MiB', 'KiB', 'B'
values = 2 ** 40, 2 ** 30, 2 ** 20, 2 ** 10, 1
def b2h(nbytes):
for (prefix, value) in zip(prefixes, values):
scaled = float(nbytes) / value
if scaled >= 1:
break
return "%.1f%s" % (scaled, prefix)
return b2h
def make_test_file(prefix='/tmp'):
f = tables.open_file(os.path.join(prefix, 'test_pttree.hdf5'), 'w')
g1 = f.create_group('/', 'group1')
g1a = f.create_group(g1, 'group1a')
g1b = f.create_group(g1, 'group1b')
filters = tables.Filters(complevel=5, complib='bzip2')
for gg in g1a, g1b:
f.create_carray(gg, 'zeros128b', obj=np.zeros(32, dtype=np.float64),
filters=filters)
f.create_carray(gg, 'random128b', obj=np.random.rand(32),
filters=filters)
g2 = f.create_group('/', 'group2')
softlink = f.create_soft_link(g2, 'softlink_g1_z128',
'/group1/group1a/zeros128b')
hardlink = f.create_hard_link(g2, 'hardlink_g1a_z128',
'/group1/group1a/zeros128b')
hlgroup = f.create_hard_link(g2, 'hardlink_g1a', '/group1/group1a')
return f
|