1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
```{eval-rst}
.. currentmodule:: tango
```
(clients)=
# Python clients to TANGO servers
In the examples here we connect to a device called *sys/tg_test/1* that runs in a
TANGO server called *TangoTest* with the instance name *test*.
This server comes with the TANGO installation. The TANGO installation
also registers the *test* instance. All you have to do is start the TangoTest
server on a console:
```
$ TangoTest test
Ready to accept request
```
:::{note}
if you receive a message saying that the server is already running,
it just means that somebody has already started the test server so you don't
need to do anything.
:::
:::{note}
PyTango used to come with an integrated [IPython](https://ipython.org) based console called
{ref}`itango`, now moved to a separate project. It provides helpers to simplify
console usage. You can use this console instead of the traditional python
console. Be aware, though, that many of the *tricks* you can do in an
{ref}`itango` console cannot be done in a python program.
:::
## Test the connection to the Device and get it's current state
One of the most basic examples is to get a reference to a device and
determine if it is running or not:
```
import tango
# create a device object
tango_test = tango.DeviceProxy("sys/tg_test/1")
# you can ping it
print(f"Ping: {tango_test.ping()}")
# every device has a state and status which can be checked with:
print(f"State: {tango_test.state()}")
print(f"Status: {tango_test.status()}")
```
If you execute:
```
Ping: 264
State: RUNNING
Status: The device is in RUNNING state.
```
## Read and write attributes
Basic read/write attribute operations:
```
from tango import DeviceProxy
# Get proxy on the tango_test1 device
print("Creating proxy to TangoTest device...")
tango_test = DeviceProxy("sys/tg_test/1")
# Read a scalar attribute. This will return a tango.DeviceAttribute
# Member 'value' contains the attribute value
scalar = tango_test.read_attribute("long_scalar")
print(f"Long_scalar value = {scalar.value}")
# Check the complete DeviceAttribute members:
print(f"\n{scalar}\n")
# Write a scalar attribute
scalar_value = 18
tango_test.write_attribute("long_scalar", scalar_value)
```
If you execute:
```
Creating proxy to TangoTest device...
Long_scalar value = 44
DeviceAttribute[
data_format = tango._tango.AttrDataFormat.SCALAR
dim_x = 1
dim_y = 0
has_failed = False
is_empty = False
name = 'long_scalar'
nb_read = 1
nb_written = 1
quality = tango._tango.AttrQuality.ATTR_VALID
r_dimension = AttributeDimension(dim_x = 1, dim_y = 0)
time = TimeVal(tv_nsec = 0, tv_sec = 1707833196, tv_usec = 456892)
type = tango._tango.CmdArgType.DevLong
value = 44
w_dim_x = 1
w_dim_y = 0
w_dimension = AttributeDimension(dim_x = 1, dim_y = 0)
w_value = 0]
```
PyTango also provides more "pythonic" way - so called High API, to do the same:
```
from tango import DeviceProxy
# Get proxy on the tango_test1 device
print("Creating proxy to TangoTest device...")
tango_test = DeviceProxy("sys/tg_test/1")
# Read a scalar attribute value directly
scalar_value = tango_test.long_scalar
print(f"Long_scalar value = {scalar_value}")
# Write a scalar attribute
tango_test.long_scalar = scalar_value
# Check the complete DeviceAttribute members:
scalar_value = tango_test["long_scalar"]
print(f"\nLong_scalar attribute:\n{scalar_value}")
```
if you run:
```
Creating proxy to TangoTest device...
Long_scalar value = 8
Long_scalar attribute:
DeviceAttribute[
data_format = tango._tango.AttrDataFormat.SCALAR
dim_x = 1
dim_y = 0
has_failed = False
is_empty = False
name = 'long_scalar'
nb_read = 1
nb_written = 1
quality = tango._tango.AttrQuality.ATTR_VALID
r_dimension = AttributeDimension(dim_x = 1, dim_y = 0)
time = TimeVal(tv_nsec = 0, tv_sec = 1707833578, tv_usec = 542918)
type = tango._tango.CmdArgType.DevLong
value = 8
w_dim_x = 1
w_dim_y = 0
w_dimension = AttributeDimension(dim_x = 1, dim_y = 0)
w_value = 8]
```
The multidimensional attributes in Pytango by defaults are numpy arrays (SPECTRUM - 1D, IMAGE - 2D).
This results in a faster and more memory efficient PyTango:
```
from tango import DeviceProxy
tango_test = DeviceProxy("sys/tg_test/1")
print(f"double_spectrum: {tango_test.double_spectrum}")
print(f"double_spectrum type: {type(tango_test.double_spectrum)}")
```
Result:
```
double_spectrum: [0. 0. 0. ..... 0. 0.]
double_spectrum type: <class 'numpy.ndarray'>
```
You can also use numpy to specify the values when
writing attributes, especially if you know the exact attribute type:
```
from tango import DeviceProxy
import numpy
tango_test = DeviceProxy("sys/tg_test/1")
tango_test.long_spectrum = numpy.arange(0, 100, dtype=numpy.int32)
data_2d_float = numpy.zeros((10, 20), dtype=numpy.float64)
tango_test.double_image = data_2d_float
```
However, if you want, you can force python's types:
```
from tango import DeviceProxy, ExtractAs
tango_test = DeviceProxy("sys/tg_test/1")
double_spectrum = tango_test.read_attribute("double_spectrum", extract_as=ExtractAs.List)
print(f"double_spectrum: {double_spectrum.value}")
print(f"double_spectrum type: {type(double_spectrum.value)}")
```
Result:
```
double_spectrum: [0.0, 0.0, 0.0, .... 0.0, 0.0]
double_spectrum type: <class 'list'>
```
## Execute commands
As you can see in the following example, when scalar types are used, the Tango
binding automagically manages the data types, and writing scripts is quite easy:
```
from tango import DeviceProxy
tango_test = DeviceProxy("sys/tg_test/1")
# First use the classical command_inout way to execute the DevString command
# (DevString in this case is a command of the Tango_Test device)
result = tango_test.command_inout("DevString", "First hello to device")
print(f"Result of execution of DevString command = {result}")
# the same can be achieved with a helper method
result = tango_test.DevString("Second Hello to device")
print(f"Result of execution of DevString command = {result}")
# Please note that argin argument type is automatically managed by python
result = tango_test.DevULong(12456)
print(f"Result of execution of DevULong command = {result}")
```
Result:
```
Result of execution of DevString command = First hello to device
Result of execution of DevString command = Second Hello to device
Result of execution of DevULong command = 12456
```
## Execute commands with more complex types
In this case you have to use put your arguments data in the correct python
structures:
```
from tango import DeviceProxy
tango_test = DeviceProxy("sys/tg_test/1")
# The input argument is a DevVarLongStringArray so create the argin
# variable containing an array of longs and an array of strings
argin = ([1,2,3], ["Hello", "TangoTest device"])
result = tango_test.DevVarLongStringArray(argin)
print(f"Result of execution of DevVarLongArray command = {result}")
```
Result:
```
Result of execution of DevVarLongArray command = [array([1, 2, 3], dtype=int32), ['Hello', 'TangoTest device']]
```
## Work with Groups
```{eval-rst}
.. todo::
write this how to
```
## Handle errors
```{eval-rst}
.. todo::
write this how to
```
This is just the tip of the iceberg. Check the {class}`~tango.DeviceProxy` for
the complete API.
|