File: device_attribute_numpy.hpp

package info (click to toggle)
pytango 10.0.2-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 10,216 kB
  • sloc: python: 28,206; cpp: 16,380; sql: 255; sh: 82; makefile: 43
file content (299 lines) | stat: -rw-r--r-- 9,303 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
/*
 * SPDX-FileCopyrightText: All Contributors to the PyTango project
 *
 * SPDX-License-Identifier: LGPL-3.0-or-later
 */

// This header file is just some template functions moved apart from
// device_attribute.cpp, and should only be included there.

#pragma once

#include "tango_numpy.h"

namespace PyDeviceAttribute
{

/// This callback is run to delete Tango::DevVarXArray* objects.
/// It is called by python. The array was associated with an attribute
/// value object that is not being used anymore.
/// @param ptr_ The array object.
/// @param type_ The type of the array objects. We need it to convert ptr_
///              to the proper type before deleting it. ex: Tango::DEV_SHORT.
#ifdef PYCAPSULE_OLD
template <long type>
static void _dev_var_x_array_deleter(void *ptr_)
{
    TANGO_DO_ON_ATTRIBUTE_DATA_TYPE_ID(type, delete static_cast<TANGO_const2arraytype(tangoTypeConst) *>(ptr_););
}
#else
template <long type>
static void _dev_var_x_array_deleter(PyObject *obj)
{
    void *ptr_ = PyCapsule_GetPointer(obj, NULL);
    TANGO_DO_ON_ATTRIBUTE_DATA_TYPE_ID(type, delete static_cast<TANGO_const2arraytype(tangoTypeConst) *>(ptr_););
}

template <>
inline void _dev_var_x_array_deleter<Tango::DEV_PIPE_BLOB>(PyObject *obj)
{
    // Unsupported
    assert(false);
}
#endif

template <long tangoTypeConst>
static inline void _update_array_values(Tango::DeviceAttribute &self, bool isImage, bopy::object py_value)
{
    typedef typename TANGO_const2type(tangoTypeConst) TangoScalarType;
    typedef typename TANGO_const2arraytype(tangoTypeConst) TangoArrayType;

    // Extract the actual data from Tango::DeviceAttribute (self)
    TangoArrayType *value_ptr = 0;
    try
    {
        self >> value_ptr;
    }
    catch(Tango::DevFailed &e)
    {
        if(strcmp(e.errors[0].reason.in(), "API_EmptyDeviceAttribute") != 0)
        {
            throw;
        }
    }

    static const int typenum = TANGO_const2numpy(tangoTypeConst);

    if(value_ptr == 0)
    {
        // Empty device attribute
        value_ptr = new TangoArrayType();
    }

    TangoScalarType *buffer = value_ptr->get_buffer();
    char *ch_ptr = reinterpret_cast<char *>(buffer);

    npy_intp dims[2];
    int nd = 1;
    size_t write_part_offset = 0;
    if(isImage)
    {
        nd = 2;
        dims[1] = self.get_dim_x();
        dims[0] = self.get_dim_y();
        write_part_offset = dims[1] * dims[0];
    }
    else
    {
        nd = 1;
        dims[0] = self.get_dim_x();
        write_part_offset = dims[0];
    }

    // Create a new numpy.ndarray() object. It uses ch_ptr as the data,
    // so no costy memory copies when handling big images.
    PyObject *array = PyArray_SimpleNewFromData(nd, dims, typenum, ch_ptr);
    if(!array)
    {
        delete value_ptr;
        bopy::throw_error_already_set();
    }

    // Create the numpy array for the write part. It will be stored in
    // another place.
    char *w_ch_ptr = 0;

    if(self.get_written_dim_x() != 0)
    {
        w_ch_ptr = reinterpret_cast<char *>(buffer + write_part_offset);
    }

    if(isImage)
    {
        nd = 2;
        dims[1] = self.get_written_dim_x();
        dims[0] = self.get_written_dim_y();
    }
    else
    {
        nd = 1;
        dims[0] = self.get_written_dim_x();
    }

    PyObject *warray = PyArray_SimpleNewFromData(nd, dims, typenum, w_ch_ptr);
    if(!warray)
    {
        Py_XDECREF(array);
        delete value_ptr;
        bopy::throw_error_already_set();
    }

    // numpy.ndarray() does not own it's memory, so we need to manage it.
    // We can assign a 'base' object that will be informed (decref'd) when
    // the last copy of numpy.ndarray() disappears.
    // PyCObject is intended for that kind of things. It's seen as a
    // black box object from python. We assign him a function to be called
    // when it is deleted -> the function deletes the data.
    PyObject *guard = PyCapsule_New(static_cast<void *>(value_ptr), NULL, _dev_var_x_array_deleter<tangoTypeConst>);
    if(!guard)
    {
        Py_XDECREF(array);
        Py_XDECREF(warray);
        delete value_ptr;
        bopy::throw_error_already_set();
    }
    PyArray_SetBaseObject(to_PyArrayObject(array), guard);
    py_value.attr(value_attr_name) = bopy::object(bopy::handle<>(array));

    // The original C api object storing the data is the same for the
    // read data and the write data. so, both array and warray share
    // the same 'base' (guard). Thus, the data will not be deleted until
    // neither is accessed anymore.
    if(warray)
    {
        Py_INCREF(guard);
        PyArray_SetBaseObject(to_PyArrayObject(warray), guard);
        py_value.attr(w_value_attr_name) = bopy::object(bopy::handle<>(warray));
    }
    else
    {
        py_value.attr(w_value_attr_name) = bopy::object();
    }
    // py_value.attr("__internal_data") = object(handle<>(borrowed(guard)));
}

template <>
inline void _update_array_values<Tango::DEV_STRING>(Tango::DeviceAttribute &self, bool isImage, bopy::object py_value)
{
    _update_array_values_as_tuples<Tango::DEV_STRING>(self, isImage, py_value);
}

template <>
inline void _update_array_values<Tango::DEV_ENCODED>(Tango::DeviceAttribute &self, bool isImage, bopy::object py_value)
{
    /// @todo Sure, it is not necessary?
    assert(false);
}

// template<long tangoTypeConst>
// static inline void _update_array_values(PythonDeviceAttribute &self, bool isImage)
// {
//     return _update_array_values_numpy<tangoTypeConst>(self, isImage);
// }

template <long tangoTypeConst>
static inline void
    _fill_numpy_attribute(Tango::DeviceAttribute &dev_attr, const bool isImage, const bopy::object &py_value)
{
    typedef typename TANGO_const2type(tangoTypeConst) TangoScalarType;
    typedef typename TANGO_const2arraytype(tangoTypeConst) TangoArrayType;

    PyObject *array = py_value.ptr();

    // -- Check dimensions
    Py_ssize_t dim_x = 0, dim_y = 0, nelems = 0;
    bool ok;
    switch(PyArray_NDIM(to_PyArrayObject(array)))
    {
    case 2: // -- Image
        ok = isImage;
        dim_x = PyArray_DIM(to_PyArrayObject(array), 1);
        dim_y = PyArray_DIM(to_PyArrayObject(array), 0);
        nelems = dim_x * dim_y;
        break;
    case 1: // -- Spectrum
        ok = !isImage;
        dim_x = PyArray_DIM(to_PyArrayObject(array), 0);
        dim_y = 0;
        nelems = dim_x;
        break;
    default: // -- WTF?!!?
        ok = false;
        break;
    }
    if(!ok)
    {
        raise_(PyExc_TypeError, isImage ? non_valid_image : non_valid_spectrum);
    }

    // -- Allocate memory for the new data object
    unique_pointer<TangoArrayType> value;
    CORBA::ULong unelems = static_cast<CORBA::ULong>(nelems);
    TangoScalarType *buffer = TangoArrayType::allocbuf(unelems);
    try
    {
        value.reset(new TangoArrayType(unelems, unelems, buffer, true));
    }
    catch(...)
    {
        TangoArrayType::freebuf(buffer);
        throw;
    }

    // -- Copy from numpy.array to TangoArrayType...
    PyArrayIterObject *iter;
    iter = (PyArrayIterObject *) PyArray_IterNew(array);
    if(!iter)
    {
        bopy::throw_error_already_set();
    }

    bopy::handle<> _h((PyObject *) iter);
    bopy::object iter_guard(_h);

    if(isImage)
    {
        // Why not use PyArray_ITER_NEXT() instead of PyArray_ITER_GOTO()?
        // We could do a single while(iter->index < iter->size) instead
        // of the double "for".
        // I did this and it worked in the sense that it went across
        // the correct number of elements but... I did not know the
        // x and y position it corresponded! Yes, 'iter' has a coordinates
        // field, but it was always [0,0], never updated!!
        npy_intp coordinates[2];
        npy_intp &x = coordinates[1];
        npy_intp &y = coordinates[0];
        npy_intp ndim_x = static_cast<npy_intp>(dim_x);
        npy_intp ndim_y = static_cast<npy_intp>(dim_y);
        for(y = 0; y < ndim_y; ++y)
        {
            for(x = 0; x < ndim_x; ++x)
            {
                PyArray_ITER_GOTO(iter, coordinates);

                PyObject *dataObj = PyArray_GETITEM(to_PyArrayObject(array), iter->dataptr);
                const bopy::object py_data = bopy::object(bopy::handle<>(dataObj));

                python_tangocpp<tangoTypeConst>::to_cpp(py_data, buffer[y * ndim_x + x]);
            }
        }
    }
    else
    {
        for(Py_ssize_t x = 0; x < dim_x; ++x)
        {
            PyObject *dataObj = PyArray_GETITEM(to_PyArrayObject(array), iter->dataptr);
            const bopy::object py_data = bopy::object(bopy::handle<>(dataObj));

            python_tangocpp<tangoTypeConst>::to_cpp(py_data, buffer[x]);

            PyArray_ITER_NEXT(iter);
        }
    }

    // -- Insert into device attribute
    dev_attr.insert(value.get(), static_cast<int>(dim_x), static_cast<int>(dim_y));

    // -- Final cleaning...
    value.release(); // Do not delete value, it is handled by dev_attr now!
}

template <>
inline void _fill_numpy_attribute<Tango::DEV_ENCODED>(Tango::DeviceAttribute &dev_attr,
                                                      const bool isImage,
                                                      const bopy::object &py_value)
{
    // Unsupported
    assert(false);
}
} // namespace PyDeviceAttribute