File: fast_from_py_numpy.hpp

package info (click to toggle)
pytango 10.0.2-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 10,216 kB
  • sloc: python: 28,206; cpp: 16,380; sql: 255; sh: 82; makefile: 43
file content (283 lines) | stat: -rw-r--r-- 10,604 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
/*
 * SPDX-FileCopyrightText: All Contributors to the PyTango project
 *
 * SPDX-License-Identifier: LGPL-3.0-or-later
 */

// This header file is just some template functions moved apart from
// attribute.cpp, and should only be included there.

#pragma once

#include "tango_numpy.h"

#define fast_python_to_tango_buffer_fallback__()                \
    fast_python_to_tango_buffer_sequence<tangoScalarTypeConst>( \
        py_val, pdim_x, pdim_y, fname, isImage, res_dim_x, res_dim_y)

template <long tangoScalarTypeConst>
    inline typename TANGO_const2type(tangoScalarTypeConst) * fast_python_to_tango_buffer_numpy(PyObject *py_val,
                                                                                               long *pdim_x,
                                                                                               long *pdim_y,
                                                                                               const std::string &fname,
                                                                                               bool isImage,
                                                                                               long &res_dim_x,
                                                                                               long &res_dim_y)
{
    typedef typename TANGO_const2type(tangoScalarTypeConst) TangoScalarType;
    static const int typenum = TANGO_const2numpy(tangoScalarTypeConst);

    if(!PyArray_Check(py_val))
    {
        return fast_python_to_tango_buffer_fallback__();
    }

    int nd = PyArray_NDIM(to_PyArrayObject(py_val));
    npy_intp *dims = PyArray_DIMS(to_PyArrayObject(py_val));
    long len = 0;

    // Is the array exactly what we need? I mean: The type we need and with
    // continuous aligned memory?
    const bool exact_array = (PyArray_CHKFLAGS(to_PyArrayObject(py_val), NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_ALIGNED) &&
                              (PyArray_TYPE(to_PyArrayObject(py_val)) == typenum));

    if(isImage)
    {
        // If dimensions are manually specified (nd must be 1), I don't
        // know how to handle from numpy
        if(nd == 1)
        {
            return fast_python_to_tango_buffer_fallback__();
        }

        // Check: This is an image!
        if(nd != 2)
        {
            Tango::Except::throw_exception("PyDs_WrongNumpyArrayDimensions",
                                           "Expecting a 2 dimensional numpy array (IMAGE attribute).",
                                           fname + "()");
        }

        // If dimensions are manually limited and it's an image, I just
        // know that if the limit is the real size, then I can safely
        // ignore it, else let the default path take care...
        bool dims_ok = true;
        if(pdim_x)
        {
            dims_ok = dims_ok && (*pdim_x == dims[1]);
        }
        if(pdim_y)
        {
            dims_ok = dims_ok && (*pdim_y == dims[0]);
        }
        if(!dims_ok)
        {
            return fast_python_to_tango_buffer_fallback__();
        }

        len = static_cast<long>(dims[0] * dims[1]);
        res_dim_x = static_cast<long>(dims[1]);
        res_dim_y = static_cast<long>(dims[0]);
    }
    else
    {
        // Check: This is an spectrum!
        if(nd != 1)
        {
            Tango::Except::throw_exception("PyDs_WrongNumpyArrayDimensions",
                                           "Expecting a 1 dimensional numpy array (SPECTRUM attribute).",
                                           fname + "()");
        }

        // If x dimension is limited then I only know how to behave
        // if the array is exact
        if(pdim_x)
        {
            // if x_dim is wrong, instead of throwing an exception I will let
            // fast_python_to_tgbuffer_sequence throw it:
            const bool dims_ok = (*pdim_x <= dims[0]);
            if(!exact_array || !dims_ok)
            {
                return fast_python_to_tango_buffer_fallback__();
            }
            len = *pdim_x;
        }
        else
        {
            len = static_cast<long>(dims[0]);
        }
        res_dim_x = len;
        res_dim_y = 0;
    }

    TangoScalarType *tg_data = new TangoScalarType[len];

    void *vd_data = tg_data;

    if(exact_array)
    {
        // The array is exactly what we need, so a plain memcpy is
        // enough!
        /// @todo If it is read only we need the copy, but if the
        /// attribute is read/write, Tango will do the copy himself on
        /// the calll to set_value(...), so there's no need for us
        /// to make an extra one...
        memcpy(vd_data, PyArray_DATA(to_PyArrayObject(py_val)), len * sizeof(TangoScalarType));
    }
    else
    {
        // We use numpy to create a copy of the array into the continuous
        // memory location that we specify.
        PyObject *py_cont;

        py_cont = PyArray_SimpleNewFromData(nd, dims, typenum, vd_data);
        if(!py_cont)
        {
            fast_python_to_tango_buffer_deleter__<tangoScalarTypeConst>(tg_data, len);
            bopy::throw_error_already_set();
        }

        if(PyArray_CopyInto((PyArrayObject *) py_cont, (PyArrayObject *) py_val) < 0)
        {
            Py_DECREF(py_cont);
            fast_python_to_tango_buffer_deleter__<tangoScalarTypeConst>(tg_data, len);
            bopy::throw_error_already_set();
        }

        Py_DECREF(py_cont);
    }

    return tg_data;
}

template <>
    inline TANGO_const2type(Tango::DEV_STRING) *
    fast_python_to_tango_buffer_numpy<Tango::DEV_STRING>(PyObject *py_val,
                                                         long *pdim_x,
                                                         long *pdim_y,
                                                         const std::string &fname,
                                                         bool isImage,
                                                         long &res_dim_x,
                                                         long &res_dim_y)
{
    static const long tangoScalarTypeConst = Tango::DEV_STRING;
    return fast_python_to_tango_buffer_fallback__();
}

template <>
    inline TANGO_const2type(Tango::DEV_ENCODED) *
    fast_python_to_tango_buffer_numpy<Tango::DEV_ENCODED>(PyObject *py_val,
                                                          long *pdim_x,
                                                          long *pdim_y,
                                                          const std::string &fname,
                                                          bool isImage,
                                                          long &res_dim_x,
                                                          long &res_dim_y)
{
    static const long tangoScalarTypeConst = Tango::DEV_ENCODED;
    return fast_python_to_tango_buffer_fallback__();
}

#define fast_python_to_corba_buffer_fallback__() \
    fast_python_to_corba_buffer_sequence<tangoArrayTypeConst>(py_val, pdim_x, fname, res_dim_x)

template <long tangoArrayTypeConst>
    inline typename TANGO_const2scalartype(tangoArrayTypeConst) *
    fast_python_to_corba_buffer_numpy(PyObject *py_val, long *pdim_x, const std::string &fname, long &res_dim_x)
{
    typedef typename TANGO_const2type(tangoArrayTypeConst) TangoArrayType;
    typedef typename TANGO_const2scalartype(tangoArrayTypeConst) TangoScalarType;

    static const int typenum = TANGO_const2scalarnumpy(tangoArrayTypeConst);

    if(!PyArray_Check(py_val))
    {
        return fast_python_to_corba_buffer_fallback__();
    }

    int nd = PyArray_NDIM(to_PyArrayObject(py_val));
    npy_intp *dims = PyArray_DIMS(to_PyArrayObject(py_val));
    long len = 0;

    // Is the array exactly what we need? I mean: The type we need and with
    // continuous aligned memory?
    const bool exact_array = (PyArray_CHKFLAGS(to_PyArrayObject(py_val), NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_ALIGNED) &&
                              (PyArray_TYPE(to_PyArrayObject(py_val)) == typenum));

    // Check: This is an spectrum!
    if(nd != 1)
    {
        Tango::Except::throw_exception("PyDs_WrongNumpyArrayDimensions",
                                       "Expecting a 1 dimensional numpy array (SPECTRUM attribute).",
                                       fname + "()");
    }

    // If x dimension is limited then I only know how to behave
    // if the array is exact
    if(pdim_x)
    {
        // if x_dim is wrong, instead of throwing an exception I will let
        // fast_python_to_tgbuffer_sequence throw it:
        const bool dims_ok = (*pdim_x <= dims[0]);
        if(!exact_array || !dims_ok)
        {
            return fast_python_to_corba_buffer_fallback__();
        }
        len = *pdim_x;
    }
    else
    {
        len = static_cast<long>(dims[0]);
    }
    res_dim_x = len;

    TangoScalarType *tg_data = TangoArrayType::allocbuf(len);

    void *vd_data = tg_data;

    if(exact_array)
    {
        // The array is exactly what we need, so a plain memcpy is
        // enough!
        /// @todo If it is read only we need the copy, but if the
        /// attribute is read/write, Tango will do the copy himself on
        /// the calll to set_value(...), so there's no need for us
        /// to make an extra one...
        memcpy(vd_data, PyArray_DATA(to_PyArrayObject(py_val)), len * sizeof(TangoScalarType));
    }
    else
    {
        // We use numpy to create a copy of the array into the continuous
        // memory location that we specify.
        PyObject *py_cont;

        py_cont = PyArray_SimpleNewFromData(nd, dims, typenum, vd_data);
        if(!py_cont)
        {
            TangoArrayType::freebuf(tg_data);
            bopy::throw_error_already_set();
        }

        if(PyArray_CopyInto((PyArrayObject *) py_cont, (PyArrayObject *) py_val) < 0)
        {
            Py_DECREF(py_cont);
            TangoArrayType::freebuf(tg_data);
            bopy::throw_error_already_set();
        }

        Py_DECREF(py_cont);
    }

    return tg_data;
}

template <>
    inline TANGO_const2scalartype(Tango::DEVVAR_STRINGARRAY) *
    fast_python_to_corba_buffer_numpy<Tango::DEVVAR_STRINGARRAY>(PyObject *py_val,
                                                                 long *pdim_x,
                                                                 const std::string &fname,
                                                                 long &res_dim_x)
{
    static const long tangoArrayTypeConst = Tango::DEVVAR_STRINGARRAY;
    return fast_python_to_corba_buffer_fallback__();
}