1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
# SPDX-FileCopyrightText: All Contributors to the PyTango project
# SPDX-License-Identifier: LGPL-3.0-or-later
"""
This is an internal PyTango module.
"""
__all__ = ("NumpyType", "numpy_type", "numpy_spectrum", "numpy_image")
__docformat__ = "restructuredtext"
import collections.abc
import numpy
from tango._tango import Except, Attribute, AttributeInfo
from tango._tango import CmdArgType as ArgType
from tango.attribute_proxy import AttributeProxy
def _numpy_invalid(*args, **kwds):
Except.throw_exception(
"PyTango_InvalidConversion",
"There's no registered conversor to numpy.",
"NumpyType.tango_to_numpy",
)
class NumpyType:
DevShort = numpy.int16
DevLong = numpy.int32
DevDouble = numpy.float64
DevFloat = numpy.float32
DevBoolean = numpy.bool_
DevUShort = numpy.uint16
DevULong = numpy.uint32
DevUChar = numpy.ubyte
DevLong64 = numpy.int64
DevULong64 = numpy.uint64
mapping = {
ArgType.DevShort: DevShort,
ArgType.DevLong: DevLong,
ArgType.DevDouble: DevDouble,
ArgType.DevFloat: DevFloat,
ArgType.DevBoolean: DevBoolean,
ArgType.DevUShort: DevUShort,
ArgType.DevULong: DevULong,
ArgType.DevUChar: DevUChar,
ArgType.DevLong64: DevLong64,
ArgType.DevULong: DevULong64,
}
@staticmethod
def tango_to_numpy(param):
if isinstance(param, ArgType):
tg_type = param
if isinstance(param, AttributeInfo): # or AttributeInfoEx
tg_type = param.data_type
elif isinstance(param, Attribute):
tg_type = param.get_data_type()
elif isinstance(param, AttributeProxy):
tg_type = param.get_config().data_type
else:
tg_type = param
try:
return NumpyType.mapping[tg_type]
except Exception:
_numpy_invalid()
@staticmethod
def spectrum(tg_type, dim_x):
"""
numpy_spectrum(self, tg_type, dim_x, dim_y) -> numpy.array
numpy_spectrum(self, tg_type, sequence) -> numpy.array
Get a square numpy array to be used with tango.
One version gets dim_x and creates an object with
this size. The other version expects any sequence to
convert.
Parameters:
- tg_type : (ArgType): The tango type. For convenience, it
can also extract this information from an
Attribute, AttributeInfo or AttributeProxy
object.
- dim_x : (int)
- sequence:
"""
np_type = NumpyType.tango_to_numpy(tg_type)
if isinstance(dim_x, collections.abc.Sequence):
return numpy.array(dim_x, dtype=np_type)
else:
return numpy.ndarray(shape=(dim_x,), dtype=np_type)
@staticmethod
def image(tg_type, dim_x, dim_y=None):
"""
numpy_image(self, tg_type, dim_x, dim_y) -> numpy.array
numpy_image(self, tg_type, sequence) -> numpy.array
Get a square numpy array to be used with tango.
One version gets dim_x and dim_y and creates an object with
this size. The other version expects a square sequence of
sequences to convert.
Parameters:
- tg_type : (ArgType): The tango type. For convenience, it
can also extract this information from an
Attribute, AttributeInfo or AttributeProxy
object.
- dim_x : (int)
- dim_y : (int)
- sequence:
"""
np_type = NumpyType.tango_to_numpy(tg_type)
if dim_y is None:
return numpy.array(dim_x, dtype=np_type)
else:
return numpy.ndarray(
shape=(
dim_y,
dim_x,
),
dtype=np_type,
)
numpy_spectrum = NumpyType.spectrum
numpy_image = NumpyType.image
numpy_type = NumpyType.tango_to_numpy
|