File: howto.rst

package info (click to toggle)
pytango 9.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 22,296 kB
  • ctags: 4,072
  • sloc: python: 19,368; cpp: 14,365; sh: 258; sql: 245; makefile: 243
file content (1246 lines) | stat: -rw-r--r-- 49,003 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
.. currentmodule:: tango

.. highlight:: python
   :linenothreshold: 3

.. _pytango-howto:

======
How to
======

This is a small list of how-tos specific to PyTango. A more general Tango how-to
list can be found `here <http://www.tango-controls.org/resources/howto>`_.


Check the default TANGO host
----------------------------

The default TANGO host can be defined using the environment variable
:envvar:`TANGO_HOST` or in a `tangorc` file
(see `Tango environment variables <http://www.esrf.eu/computing/cs/tango/tango_doc/kernel_doc/ds_prog/node11.html#SECTION0011123000000000000000>`_
for complete information)

To check what is the current value that TANGO uses for the default configuration
simple do::

    >>> import tango
    >>> tango.ApiUtil.get_env_var("TANGO_HOST")
    'homer.simpson.com:10000'

Check TANGO version
-------------------

There are two library versions you might be interested in checking:
The PyTango version::

    >>> import tango
    >>> tango.__version__
    '9.2.0'

    >>> tango.__version_info__
    (9, 2, 0, 'b', 1)

... and the Tango C++ library version that PyTango was compiled with::

    >>> import tango
    >>> tango.constants.TgLibVers
    '9.2.0'


Report a bug
------------

Bugs can be reported as tickets in `TANGO Source forge <https://sourceforge.net/p/tango-cs/bugs/>`_.

When making a bug report don't forget to select *PyTango* in **Category**.

It is also helpfull if you can put in the ticket description the PyTango information.
It can be a dump of:

.. sourcecode:: console

   $ python -c "from tango.utils import info; print(info())"

Test the connection to the Device and get it's current state
------------------------------------------------------------

One of the most basic examples is to get a reference to a device and
determine if it is running or not::

    from tango import DeviceProxy

    # Get proxy on the tango_test1 device
    print("Creating proxy to TangoTest device...")
    tango_test = DeviceProxy("sys/tg_test/1")

    # ping it
    print(tango_test.ping())

    # get the state
    print(tango_test.state())

Read and write attributes
-------------------------

Basic read/write attribute operations::

    from tango import DeviceProxy

    # Get proxy on the tango_test1 device
    print("Creating proxy to TangoTest device...")
    tango_test = DeviceProxy("sys/tg_test/1")

    # Read a scalar attribute. This will return a tango.DeviceAttribute
    # Member 'value' contains the attribute value
    scalar = tango_test.read_attribute("long_scalar")
    print("Long_scalar value = {0}".format(scalar.value))

    # PyTango provides a shorter way:
    scalar = tango_test.long_scalar.value
    print("Long_scalar value = {0}".format(scalar))

    # Read a spectrum attribute
    spectrum = tango_test.read_attribute("double_spectrum")
    # ... or, the shorter version:
    spectrum = tango_test.double_spectrum

    # Write a scalar attribute
    scalar_value = 18
    tango_test.write_attribute("long_scalar", scalar_value)

    #  PyTango provides a shorter way:
    tango_test.long_scalar = scalar_value

    # Write a spectrum attribute
    spectrum_value = [1.2, 3.2, 12.3]
    tango_test.write_attribute("double_spectrum", spectrum_value)
    # ... or, the shorter version:
    tango_test.double_spectrum = spectrum_value

    # Write an image attribute
    image_value = [ [1, 2], [3, 4] ]
    tango_test.write_attribute("long_image", image_value)
    # ... or, the shorter version:
    tango_test.long_image = image_value

Note that if PyTango is compiled with numpy support the values got when reading
a spectrum or an image will be numpy arrays. This results in a faster and
more memory efficient PyTango. You can also use numpy to specify the values when
writing attributes, especially if you know the exact attribute type::

    import numpy
    from tango import DeviceProxy

    # Get proxy on the tango_test1 device
    print("Creating proxy to TangoTest device...")
    tango_test = DeviceProxy("sys/tg_test/1")

    data_1d_long = numpy.arange(0, 100, dtype=numpy.int32)

    tango_test.long_spectrum = data_1d_long

    data_2d_float = numpy.zeros((10,20), dtype=numpy.float64)

    tango_test.double_image = data_2d_float


Execute commands
----------------

As you can see in the following example, when scalar types are used, the Tango
binding automagically manages the data types, and writing scripts is quite easy::

    from tango import DeviceProxy

    # Get proxy on the tango_test1 device
    print("Creating proxy to TangoTest device...")
    tango_test = DeviceProxy("sys/tg_test/1")

    # First use the classical command_inout way to execute the DevString command
    # (DevString in this case is a command of the Tango_Test device)

    result = tango_test.command_inout("DevString", "First hello to device")
    print("Result of execution of DevString command = {0}".format(result))

    # the same can be achieved with a helper method
    result = tango_test.DevString("Second Hello to device")
    print("Result of execution of DevString command = {0}".format(result))

    # Please note that argin argument type is automatically managed by python
    result = tango_test.DevULong(12456)
    print("Result of execution of DevULong command = {0}".format(result))


Execute commands with more complex types
----------------------------------------

In this case you have to use put your arguments data in the correct python
structures::

    from tango import DeviceProxy

    # Get proxy on the tango_test1 device
    print("Creating proxy to TangoTest device...")
    tango_test = DeviceProxy("sys/tg_test/1")

    # The input argument is a DevVarLongStringArray so create the argin
    # variable containing an array of longs and an array of strings
    argin = ([1,2,3], ["Hello", "TangoTest device"])

    result = tango_test.DevVarLongArray(argin)
    print("Result of execution of DevVarLongArray command = {0}".format(result))

Work with Groups
----------------

.. todo::
   write this how to

Handle errors
-------------

.. todo::
   write this how to

.. _pytango-howto-server:

For now check :ref:`pytango-exception-api`.

Registering devices
-------------------

Here is how to define devices in the Tango DataBase::

    from tango import Database, DbDevInfo

    #  A reference on the DataBase
    db = Database()

    # The 3 devices name we want to create
    # Note: these 3 devices will be served by the same DServer
    new_device_name1 = "px1/tdl/mouse1"
    new_device_name2 = "px1/tdl/mouse2"
    new_device_name3 = "px1/tdl/mouse3"

    # Define the Tango Class served by this  DServer
    new_device_info_mouse = DbDevInfo()
    new_device_info_mouse._class = "Mouse"
    new_device_info_mouse.server = "ds_Mouse/server_mouse"

    # add the first device
    print("Creating device: %s" % new_device_name1)
    new_device_info_mouse.name = new_device_name1
    db.add_device(new_device_info_mouse)

    # add the next device
    print("Creating device: %s" % new_device_name2)
    new_device_info_mouse.name = new_device_name2
    db.add_device(new_device_info_mouse)

    # add the third device
    print("Creating device: %s" % new_device_name3)
    new_device_info_mouse.name = new_device_name3
    db.add_device(new_device_info_mouse)


Setting up device properties
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A more complex example using python subtilities.
The following python script example (containing some functions and instructions
manipulating a Galil motor axis device server) gives an idea of how the Tango
API should be accessed from Python::

    from tango import DeviceProxy

    # connecting to the motor axis device
    axis1 = DeviceProxy("microxas/motorisation/galilbox")

    # Getting Device Properties
    property_names = ["AxisBoxAttachement",
                      "AxisEncoderType",
                      "AxisNumber",
                      "CurrentAcceleration",
                      "CurrentAccuracy",
                      "CurrentBacklash",
                      "CurrentDeceleration",
                      "CurrentDirection",
                      "CurrentMotionAccuracy",
                      "CurrentOvershoot",
                      "CurrentRetry",
                      "CurrentScale",
                      "CurrentSpeed",
                      "CurrentVelocity",
                      "EncoderMotorRatio",
                      "logging_level",
                      "logging_target",
                      "UserEncoderRatio",
                      "UserOffset"]

    axis_properties = axis1.get_property(property_names)
    for prop in axis_properties.keys():
        print("%s: %s" % (prop, axis_properties[prop][0]))

    # Changing Properties
    axis_properties["AxisBoxAttachement"] = ["microxas/motorisation/galilbox"]
    axis_properties["AxisEncoderType"] = ["1"]
    axis_properties["AxisNumber"] = ["6"]
    axis1.put_property(axis_properties)

Write a server
--------------

Before reading this chapter you should be aware of the TANGO basic concepts.
This chapter does not explain what a Tango device or a device server is.
This is explained in details in the
`Tango control system manual <http://www.tango-controls.org/resources/documentation/kernel/>`_

Since version 8.1, PyTango provides a helper module which simplifies the
development of a Tango device server. This helper is provided through the
:mod:`tango.server` module.

Here is a simple example on how to write a *Clock* device server using the
high level API

.. code-block:: python
   :linenos:

    import time
    from tango.server import run
    from tango.server import Device, DeviceMeta
    from tango.server import attribute, command, pipe


    class Clock(Device):
        __metaclass__ = DeviceMeta

        @attribute
        def time(self):
            return time.time()

        @command(dtype_in=str, dtype_out=str)
        def strftime(self, format):
            return time.strftime(format)

	@pipe
	def info(self):
            return ('Information',
                    dict(manufacturer='Tango',
	                 model='PS2000',
                         version_number=123))


    if __name__ == "__main__":
        run([Clock])


**line 2-4**
    import the necessary symbols

**line 7**
    tango device class definition. A Tango device must inherit from
    :class:`tango.server.Device`

**line 8**
    mandatory *magic* line. A Tango device must define the metaclass as
    :class:`tango.server.DeviceClass`. This has to be done due to a limitation
    on boost-python

**line 10-12**
    definition of the *time* attribute. By default, attributes are double, scalar,
    read-only. Check the :class:`~tango.server.attribute` for the complete
    list of attribute options.

**line 14-16**
    the method *strftime* is exported as a Tango command. In receives a string
    as argument and it returns a string. If a method is to be exported as a
    Tango command, it must be decorated as such with the
    :func:`~tango.server.command` decorator

**line 18-23**
    definition of the *info* pipe. Check the :class:`~tango.server.pipe`
    for the complete list of pipe options.

**line 28**
    start the Tango run loop. The mandatory argument is a list of python classes
    that are to be exported as Tango classes. Check :func:`~tango.server.run`
    for the complete list of options

Here is a more complete example on how to write a *PowerSupply* device server
using the high level API. The example contains:

#. a read-only double scalar attribute called *voltage*
#. a read/write double scalar expert attribute *current*
#. a read-only double image attribute called *noise*
#. a *ramp* command
#. a *host* device property
#. a *port* class property

.. code-block:: python
    :linenos:

    from time import time
    from numpy.random import random_sample

    from tango import AttrQuality, AttrWriteType, DispLevel, run
    from tango.server import Device, DeviceMeta, attribute, command
    from tango.server import class_property, device_property


    class PowerSupply(Device):
        __metaclass__ = DeviceMeta

        current = attribute(label="Current", dtype=float,
                            display_level=DispLevel.EXPERT,
                            access=AttrWriteType.READ_WRITE,
                            unit="A", format="8.4f",
                            min_value=0.0, max_value=8.5,
                            min_alarm=0.1, max_alarm=8.4,
                            min_warning=0.5, max_warning=8.0,
                            fget="get_current", fset="set_current",
                            doc="the power supply current")

        noise = attribute(label="Noise", dtype=((float,),),
                          max_dim_x=1024, max_dim_y=1024,
                          fget="get_noise")

        host = device_property(dtype=str)
        port = class_property(dtype=int, default_value=9788)

	@attribute
        def voltage(self):
            self.info_stream("get voltage(%s, %d)" % (self.host, self.port))
            return 10.0

        def get_current(self):
            return 2.3456, time(), AttrQuality.ATTR_WARNING

        def set_current(self, current):
            print("Current set to %f" % current)

        def get_noise(self):
            return random_sample((1024, 1024))

        @command(dtype_in=float)
        def ramp(self, value):
            print("Ramping up...")


    if __name__ == "__main__":
        run([PowerSupply])


.. note::
    the ``__metaclass__`` statement is mandatory due to a limitation in the
    *boost-python* library used by PyTango.

    If you are using python 3 you can write instead::

        class PowerSupply(Device, metaclass=DeviceMeta)
            pass

.. _logging:

Server logging
--------------

This chapter instructs you on how to use the tango logging API (log4tango) to
create tango log messages on your device server.

The logging system explained here is the Tango Logging Service (TLS). For
detailed information on how this logging system works please check:

    * `3.5 The tango logging service <http://www.esrf.eu/computing/cs/tango/tango_doc/kernel_doc/ds_prog/node4.html#sec:The-Tango-Logging>`_
    * `9.3 The tango logging service <http://www.esrf.eu/computing/cs/tango/tango_doc/kernel_doc/ds_prog/node9.html#SECTION00930000000000000000>`_

The easiest way to start seeing log messages on your device server console is
by starting it with the verbose option. Example::

    python PyDsExp.py PyDs1 -v4

This activates the console tango logging target and filters messages with
importance level DEBUG or more.
The links above provided detailed information on how to configure log levels
and log targets. In this document we will focus on how to write log messages on
your device server.

Basic logging
~~~~~~~~~~~~~

The most basic way to write a log message on your device is to use the
:class:`~tango.server.Device` logging related methods:

    * :meth:`~tango.server.Device.debug_stream`
    * :meth:`~tango.server.Device.info_stream`
    * :meth:`~tango.server.Device.warn_stream`
    * :meth:`~tango.server.Device.error_stream`
    * :meth:`~tango.server.Device.fatal_stream`

Example::

    def read_voltage(self):
        self.info_stream("read voltage attribute")
	# ...
	return voltage_value

This will print a message like::

    1282206864 [-1215867200] INFO test/power_supply/1 read voltage attribute

every time a client asks to read the *voltage* attribute value.

The logging methods support argument list feature (since PyTango 8.1). Example::

    def read_voltage(self):
        self.info_stream("read_voltage(%s, %d)", self.host, self.port)
	# ...
	return voltage_value


Logging with print statement
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

*This feature is only possible since PyTango 7.1.3*

It is possible to use the print statement to log messages into the tango logging
system. This is achieved by using the python's print extend form sometimes
refered to as *print chevron*.

Same example as above, but now using *print chevron*::

    def read_voltage(self, the_att):
        print >>self.log_info, "read voltage attribute"
	# ...
	return voltage_value

Or using the python 3k print function::

    def read_Long_attr(self, the_att):
        print("read voltage attribute", file=self.log_info)
	# ...
	return voltage_value


Logging with decorators
~~~~~~~~~~~~~~~~~~~~~~~

*This feature is only possible since PyTango 7.1.3*

PyTango provides a set of decorators that place automatic log messages when
you enter and when you leave a python method. For example::

    @tango.DebugIt()
    def read_Long_attr(self, the_att):
        the_att.set_value(self.attr_long)

will generate a pair of log messages each time a client asks for the 'Long_attr'
value. Your output would look something like::

    1282208997 [-1215965504] DEBUG test/pydsexp/1 -> read_Long_attr()
    1282208997 [-1215965504] DEBUG test/pydsexp/1 <- read_Long_attr()

Decorators exist for all tango log levels:
    * :class:`tango.DebugIt`
    * :class:`tango.InfoIt`
    * :class:`tango.WarnIt`
    * :class:`tango.ErrorIt`
    * :class:`tango.FatalIt`

The decorators receive three optional arguments:
    * show_args - shows method arguments in log message (defaults to False)
    * show_kwargs shows keyword method arguments in log message (defaults to False)
    * show_ret - shows return value in log message (defaults to False)

Example::

    @tango.DebugIt(show_args=True, show_ret=True)
    def IOLong(self, in_data):
        return in_data * 2

will output something like::

    1282221947 [-1261438096] DEBUG test/pydsexp/1 -> IOLong(23)
    1282221947 [-1261438096] DEBUG test/pydsexp/1 46 <- IOLong()


Multiple device classes (Python and C++) in a server
----------------------------------------------------

Within the same python interpreter, it is possible to mix several Tango classes.
Let's say two of your colleagues programmed two separate Tango classes in two
separated python files: A :class:`PLC` class in a :file:`PLC.py`::

    # PLC.py

    from tango.server import Device, DeviceMeta, run

    class PLC(Device):
        __metaclass__ = DeviceMeta

        # bla, bla my PLC code

    if __name__ == "__main__":
        run([PLC])

... and a :class:`IRMirror` in a :file:`IRMirror.py`::

    # IRMirror.py

    from tango.server import Device, DeviceMeta, run

    class IRMirror(Device):
        __metaclass__ = DeviceMeta

        # bla, bla my IRMirror code

    if __name__ == "__main__":
        run([IRMirror])

You want to create a Tango server called `PLCMirror` that is able to contain
devices from both PLC and IRMirror classes. All you have to do is write
a :file:`PLCMirror.py` containing the code::

    # PLCMirror.py

    from tango.server import run
    from PLC import PLC
    from IRMirror import IRMirror

    run([PLC, IRMirror])

It is also possible to add C++ Tango class in a Python device server as soon as:
    1. The Tango class is in a shared library
    2. It exist a C function to create the Tango class

For a Tango class called MyTgClass, the shared library has to be called
MyTgClass.so and has to be in a directory listed in the LD_LIBRARY_PATH
environment variable. The C function creating the Tango class has to be called
_create_MyTgClass_class() and has to take one parameter of type "char \*" which
is the Tango class name. Here is an example of the main function of the same
device server than before but with one C++ Tango class called SerialLine::

    import tango
    import sys

    if __name__ == '__main__':
        py = tango.Util(sys.argv)
        util.add_class('SerialLine', 'SerialLine', language="c++")
        util.add_class(PLCClass, PLC, 'PLC')
        util.add_class(IRMirrorClass, IRMirror, 'IRMirror')

        U = tango.Util.instance()
        U.server_init()
        U.server_run()

:Line 6: The C++ class is registered in the device server
:Line 7 and 8: The two Python classes are registered in the device server

Create attributes dynamically
-----------------------------

It is also possible to create dynamic attributes within a Python device server.
There are several ways to create dynamic attributes. One of the way, is to
create all the devices within a loop, then to create the dynamic attributes and
finally to make all the devices available for the external world. In C++ device
server, this is typically done within the <Device>Class::device_factory() method.
In Python device server, this method is generic and the user does not have one.
Nevertheless, this generic device_factory method calls a method named dyn_attr()
allowing the user to create his dynamic attributes. It is simply necessary to
re-define this method within your <Device>Class and to create the dynamic
attribute within this method:

    ``dyn_attr(self, dev_list)``

    where dev_list is a list containing all the devices created by the
    generic device_factory() method.

There is another point to be noted regarding dynamic attribute within Python
device server. The Tango Python device server core checks that for each
attribute it exists methods named <attribute_name>_read and/or
<attribute_name>_write and/or is_<attribute_name>_allowed. Using dynamic
attribute, it is not possible to define these methods because attributes name
and number are known only at run-time.
To address this issue, the Device_3Impl::add_attribute() method has a diferent
signature for Python device server which is:

    ``add_attribute(self, attr, r_meth = None, w_meth = None, is_allo_meth = None)``

attr is an instance of the Attr class, r_meth is the method which has to be
executed with the attribute is read, w_meth is the method to be executed
when the attribute is written and is_allo_meth is the method to be executed
to implement the attribute state machine. The method passed here as argument
as to be class method and not object method. Which argument you have to use
depends on the type of the attribute (A WRITE attribute does not need a
read method). Note, that depending on the number of argument you pass to this
method, you may have to use Python keyword argument. The necessary methods
required by the Tango Python device server core will be created automatically
as a forward to the methods given as arguments.

Here is an example of a device which has a TANGO command called
*createFloatAttribute*. When called, this command creates a new scalar floating
point attribute with the specified name::


    from tango import Util, Attr
    from tango.server import DeviceMeta, Device, command

    class MyDevice(Device):
    	__metaclass__ = DeviceMeta

	@command(dtype_in=str)
        def CreateFloatAttribute(self, attr_name):
	    attr = Attr(attr_name, tango.DevDouble)
	    self.add_attribute(attr, self.read_General, self.write_General)

	def read_General(self, attr):
	    self.info_stream("Reading attribute %s", attr.get_name())
	    attr.set_value(99.99)

	def write_General(self, attr):
	    self.info_stream("Writting attribute %s", attr.get_name())


Create/Delete devices dynamically
---------------------------------

*This feature is only possible since PyTango 7.1.2*

Starting from PyTango 7.1.2 it is possible to create devices in a device server
"en caliente". This means that you can create a command in your "management device"
of a device server that creates devices of (possibly) several other tango classes.
There are two ways to create a new device which are described below.

Tango imposes a limitation: the tango class(es) of the device(s) that is(are)
to be created must have been registered before the server starts.
If you use the high level API, the tango class(es) must be listed in the call
to :func:`~tango.server.run`. If you use the lower level server API, it must
be done using individual calls to :meth:`~tango.Util.add_class`.


Dynamic device from a known tango class name
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If you know the tango class name but you don't have access to the :class:`tango.DeviceClass`
(or you are too lazy to search how to get it ;-) the way to do it is call
:meth:`~tango.Util.create_device` / :meth:`~tango.Util.delete_device`.
Here is an example of implementing a tango command on one of your devices that
creates a device of some arbitrary class (the example assumes the tango commands
'CreateDevice' and 'DeleteDevice' receive a parameter of type DevVarStringArray
with two strings. No error processing was done on the code for simplicity sake)::

    from tango import Util
    from tango.server import DeviceMeta, Device, command

    class MyDevice(Device):
    	__metaclass__ = DeviceMeta

	@command(dtype_in=[str])
        def CreateDevice(self, pars):
            klass_name, dev_name = pars
            util = Util.instance()
            util.create_device(klass_name, dev_name, alias=None, cb=None)

	@command(dtype_in=[str])
        def DeleteDevice(self, pars):
            klass_name, dev_name = pars
            util = Util.instance()
            util.delete_device(klass_name, dev_name)

An optional callback can be registered that will be executed after the device is
registed in the tango database but before the actual device object is created
and its init_device method is called. It can be used, for example, to initialize
some device properties.

Dynamic device from a known tango class
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If you already have access to the :class:`~tango.DeviceClass` object that
corresponds to the tango class of the device to be created you can call directly
the :meth:`~tango.DeviceClass.create_device` / :meth:`~tango.DeviceClass.delete_device`.
For example, if you wish to create a clone of your device, you can create a
tango command called *Clone*::

    class MyDevice(tango.Device_4Impl):

        def fill_new_device_properties(self, dev_name):
            prop_names = db.get_device_property_list(self.get_name(), "*")
            prop_values = db.get_device_property(self.get_name(), prop_names.value_string)
            db.put_device_property(dev_name, prop_values)

            # do the same for attributes...
            ...

        def Clone(self, dev_name):
            klass = self.get_device_class()
            klass.create_device(dev_name, alias=None, cb=self.fill_new_device_properties)

        def DeleteSibling(self, dev_name):
            klass = self.get_device_class()
            klass.delete_device(dev_name)

Note that the cb parameter is optional. In the example it is given for
demonstration purposes only.

.. _server:

Write a server (original API)
-----------------------------

This chapter describes how to develop a PyTango device server using the
original PyTango server API. This API mimics the C++ API and is considered
low level.
You should write a server using this API if you are using code generated by
`Pogo tool <http://www.esrf.eu/computing/cs/tango/tango_doc/tools_doc/pogo_doc>`_
or if for some reason the high level API helper doesn't provide a feature
you need (in that case think of writing a mail to tango mailing list explaining
what you cannot do).

The main part of a Python device server
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The rule of this part of a Tango device server is to:

    - Create the :class:`Util` object passing it the Python interpreter command
      line arguments
    - Add to this object the list of Tango class(es) which have to be hosted by
      this interpreter
    - Initialize the device server
    - Run the device server loop

The following is a typical code for this main function::

    if __name__ == '__main__':
        util = tango.Util(sys.argv)
        util.add_class(PyDsExpClass, PyDsExp)

        U = tango.Util.instance()
        U.server_init()
        U.server_run()

**Line 2**
    Create the Util object passing it the interpreter command line arguments
**Line 3**
    Add the Tango class *PyDsExp* to the device server. The :meth:`Util.add_class`
    method of the Util class has two arguments which are the Tango class
    PyDsExpClass instance and the Tango PyDsExp instance.
    This :meth:`Util.add_class` method is only available since version
    7.1.2. If you are using an older version please use
    :meth:`Util.add_TgClass` instead.
**Line 7**
    Initialize the Tango device server
**Line 8**
    Run the device server loop

The PyDsExpClass class in Python
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The rule of this class is to :

    - Host and manage data you have only once for the Tango class whatever
      devices of this class will be created
    - Define Tango class command(s)
    - Define Tango class attribute(s)

In our example, the code of this Python class looks like::

    class PyDsExpClass(tango.DeviceClass):

        cmd_list = { 'IOLong' : [ [ tango.ArgType.DevLong, "Number" ],
                                  [ tango.ArgType.DevLong, "Number * 2" ] ],
                     'IOStringArray' : [ [ tango.ArgType.DevVarStringArray, "Array of string" ],
                                         [ tango.ArgType.DevVarStringArray, "This reversed array"] ],
        }

        attr_list = { 'Long_attr' : [ [ tango.ArgType.DevLong ,
                                        tango.AttrDataFormat.SCALAR ,
                                        tango.AttrWriteType.READ],
                                      { 'min alarm' : 1000, 'max alarm' : 1500 } ],

                     'Short_attr_rw' : [ [ tango.ArgType.DevShort,
                                           tango.AttrDataFormat.SCALAR,
                                           tango.AttrWriteType.READ_WRITE ] ]
        }



**Line 1**
    The PyDsExpClass class has to inherit from the :class:`DeviceClass` class

**Line 3 to 7**
    Definition of the cmd_list :class:`dict` defining commands. The *IOLong* command
    is defined at lines 3 and 4. The *IOStringArray* command is defined in
    lines 5 and 6
**Line 9 to 17**
    Definition of the attr_list :class:`dict` defining attributes. The *Long_attr*
    attribute is defined at lines 9 to 12 and the *Short_attr_rw* attribute is
    defined at lines 14 to 16

If you have something specific to do in the class constructor like
initializing some specific data member, you will have to code a class
constructor. An example of such a contructor is ::

    def __init__(self, name):
        tango.DeviceClass.__init__(self, name)
        self.set_type("TestDevice")

The device type is set at line 3.

Defining commands
~~~~~~~~~~~~~~~~~

As shown in the previous example, commands have to be defined in a :class:`dict`
called *cmd_list* as a data member of the xxxClass class of the Tango class.
This :class:`dict` has one element per command. The element key is the command
name. The element value is a python list which defines the command. The generic
form of a command definition is:

    ``'cmd_name' : [ [in_type, <"In desc">], [out_type, <"Out desc">], <{opt parameters}>]``

The first element of the value list is itself a list with the command input
data type (one of the :class:`tango.ArgType` pseudo enumeration value) and
optionally a string describing this input argument. The second element of the
value list is also a list with the command output data type (one of the
:class:`tango.ArgType` pseudo enumeration value) and optionaly a string
describing it. These two elements are mandatory. The third list element is
optional and allows additional command definition. The authorized element for
this :class:`dict` are summarized in the following array:

    +-------------------+----------------------+------------------------------------------+
    |      key          |        Value         |             Definition                   |
    +===================+======================+==========================================+
    | "display level"   | DispLevel enum value |       The command display level          |
    +-------------------+----------------------+------------------------------------------+
    | "polling period"  | Any number           |     The command polling period (mS)      |
    +-------------------+----------------------+------------------------------------------+
    | "default command" | True or False        | To define that it is the default command |
    +-------------------+----------------------+------------------------------------------+

Defining attributes
~~~~~~~~~~~~~~~~~~~

As shown in the previous example, attributes have to be defined in a :class:`dict`
called **attr_list** as a data
member of the xxxClass class of the Tango class. This :class:`dict` has one element
per attribute. The element key is the attribute name. The element value is a
python :class:`list` which defines the attribute. The generic form of an
attribute definition is:

    ``'attr_name' : [ [mandatory parameters], <{opt parameters}>]``

For any kind of attributes, the mandatory parameters are:

    ``[attr data type, attr data format, attr data R/W type]``

The attribute data type is one of the possible value for attributes of the
:class:`tango.ArgType` pseudo enunmeration. The attribute data format is one
of the possible value of the :class:`tango.AttrDataFormat` pseudo enumeration
and the attribute R/W type is one of the possible value of the
:class:`tango.AttrWriteType` pseudo enumeration. For spectrum attribute,
you have to add the maximum X size (a number). For image attribute, you have
to add the maximun X and Y dimension (two numbers). The authorized elements for
the :class:`dict` defining optional parameters are summarized in the following
array:

    +-------------------+-----------------------------------+------------------------------------------+
    |       key         |              value                |            definition                    |
    +===================+===================================+==========================================+
    | "display level"   | tango.DispLevel enum value        |   The attribute display level            |
    +-------------------+-----------------------------------+------------------------------------------+
    |"polling period"   |          Any number               | The attribute polling period (mS)        |
    +-------------------+-----------------------------------+------------------------------------------+
    |  "memorized"      | "true" or                         | Define if and how the att. is memorized  |
    |                   | "true_without_hard_applied"       |                                          |
    +-------------------+-----------------------------------+------------------------------------------+
    |     "label"       |            A string               |       The attribute label                |
    +-------------------+-----------------------------------+------------------------------------------+
    |  "description"    |            A string               |   The attribute description              |
    +-------------------+-----------------------------------+------------------------------------------+
    |     "unit"        |            A string               |       The attribute unit                 |
    +-------------------+-----------------------------------+------------------------------------------+
    |"standard unit"    |           A number                |  The attribute standard unit             |
    +-------------------+-----------------------------------+------------------------------------------+
    | "display unit"    |            A string               |   The attribute display unit             |
    +-------------------+-----------------------------------+------------------------------------------+
    |    "format"       |            A string               | The attribute display format             |
    +-------------------+-----------------------------------+------------------------------------------+
    |  "max value"      |          A number                 |   The attribute max value                |
    +-------------------+-----------------------------------+------------------------------------------+
    |   "min value"     |           A number                |    The attribute min value               |
    +-------------------+-----------------------------------+------------------------------------------+
    |  "max alarm"      |           A number                |    The attribute max alarm               |
    +-------------------+-----------------------------------+------------------------------------------+
    |  "min alarm"      |           A number                |    The attribute min alarm               |
    +-------------------+-----------------------------------+------------------------------------------+
    | "min warning"     |           A number                |  The attribute min warning               |
    +-------------------+-----------------------------------+------------------------------------------+
    |"max warning"      |           A number                |  The attribute max warning               |
    +-------------------+-----------------------------------+------------------------------------------+
    |  "delta time"     |           A number                | The attribute RDS alarm delta time       |
    +-------------------+-----------------------------------+------------------------------------------+
    |   "delta val"     |           A number                | The attribute RDS alarm delta val        |
    +-------------------+-----------------------------------+------------------------------------------+

The PyDsExp class in Python
~~~~~~~~~~~~~~~~~~~~~~~~~~~

The rule of this class is to implement methods executed by commands and attributes.
In our example, the code of this class looks like::

    class PyDsExp(tango.Device_4Impl):

        def __init__(self,cl,name):
            tango.Device_4Impl.__init__(self, cl, name)
            self.info_stream('In PyDsExp.__init__')
            PyDsExp.init_device(self)

        def init_device(self):
            self.info_stream('In Python init_device method')
            self.set_state(tango.DevState.ON)
            self.attr_short_rw = 66
            self.attr_long = 1246

        #------------------------------------------------------------------

        def delete_device(self):
            self.info_stream('PyDsExp.delete_device')

        #------------------------------------------------------------------
        # COMMANDS
        #------------------------------------------------------------------

        def is_IOLong_allowed(self):
            return self.get_state() == tango.DevState.ON

        def IOLong(self, in_data):
            self.info_stream('IOLong', in_data)
            in_data = in_data * 2
            self.info_stream('IOLong returns', in_data)
            return in_data

        #------------------------------------------------------------------

        def is_IOStringArray_allowed(self):
            return self.get_state() == tango.DevState.ON

        def IOStringArray(self, in_data):
            l = range(len(in_data)-1, -1, -1)
            out_index=0
            out_data=[]
            for i in l:
                self.info_stream('IOStringArray <-', in_data[out_index])
                out_data.append(in_data[i])
                self.info_stream('IOStringArray ->',out_data[out_index])
                out_index += 1
            self.y = out_data
            return out_data

        #------------------------------------------------------------------
        # ATTRIBUTES
        #------------------------------------------------------------------

        def read_attr_hardware(self, data):
            self.info_stream('In read_attr_hardware')

        def read_Long_attr(self, the_att):
            self.info_stream("read_Long_attr")

            the_att.set_value(self.attr_long)

        def is_Long_attr_allowed(self, req_type):
            return self.get_state() in (tango.DevState.ON,)

        def read_Short_attr_rw(self, the_att):
            self.info_stream("read_Short_attr_rw")

            the_att.set_value(self.attr_short_rw)

        def write_Short_attr_rw(self, the_att):
            self.info_stream("write_Short_attr_rw")

            self.attr_short_rw = the_att.get_write_value()

        def is_Short_attr_rw_allowed(self, req_type):
            return self.get_state() in (tango.DevState.ON,)

**Line 1**
    The PyDsExp class has to inherit from the tango.Device_4Impl
**Line 3 to 6**
    PyDsExp class constructor. Note that at line 6, it calls the *init_device()*
    method
**Line 8 to 12**
    The init_device() method. It sets the device state (line 9) and initialises
    some data members
**Line 16 to 17**
    The delete_device() method. This method is not mandatory. You define it
    only if you have to do something specific before the device is destroyed
**Line 23 to 30**
    The two methods for the *IOLong* command. The first method is called
    *is_IOLong_allowed()* and it is the command is_allowed method (line 23 to 24).
    The second method has the same name than the command name. It is the method
    which executes the command. The command input data type is a Tango long
    and therefore, this method receives a python integer.
**Line 34 to 47**
    The two methods for the *IOStringArray* command. The first method is its
    is_allowed method (Line 34 to 35). The second one is the command
    execution method (Line 37 to 47). The command input data type is a string
    array. Therefore, the method receives the array in a python list of python
    strings.
**Line 53 to 54**
    The *read_attr_hardware()* method. Its argument is a Python sequence of
    Python integer.
**Line 56 to 59**
    The method executed when the *Long_attr* attribute is read. Note that before
    PyTango 7 it sets the attribute value with the tango.set_attribute_value
    function. Now the same can be done using the set_value of the attribute
    object
**Line 61 to 62**
    The is_allowed method for the *Long_attr* attribute. This is an optional
    method that is called when the attribute is read or written. Not defining it
    has the same effect as always returning True. The parameter req_type is of
    type :class:`AttReqtype` which tells if the method is called due to a read
    or write request. Since this is a read-only attribute, the method will only
    be called for read requests, obviously.
**Line 64 to 67**
    The method executed when the *Short_attr_rw* attribute is read.
**Line 69 to 72**
    The method executed when the Short_attr_rw attribute is written.
    Note that before PyTango 7 it gets the attribute value with a call to the
    Attribute method *get_write_value* with a list as argument. Now the write
    value can be obtained as the return value of the *get_write_value* call. And
    in case it is a scalar there is no more the need to extract it from the list.
**Line 74 to 75**
    The is_allowed method for the *Short_attr_rw* attribute. This is an optional
    method that is called when the attribute is read or written. Not defining it
    has the same effect as always returning True. The parameter req_type is of
    type :class:`AttReqtype` which tells if the method is called due to a read
    or write request.

General methods
###############

The following array summarizes how the general methods we have in a Tango
device server are implemented in Python.

+----------------------+-------------------------+-------------+-----------+
|         Name         | Input par (with "self") |return value | mandatory |
+======================+=========================+=============+===========+
|      init_device     |        None             |   None      |  Yes      |
+----------------------+-------------------------+-------------+-----------+
|     delete_device    |        None             |   None      |  No       |
+----------------------+-------------------------+-------------+-----------+
| always_executed_hook |        None             |   None      |  No       |
+----------------------+-------------------------+-------------+-----------+
|    signal_handler    |   :py:obj:`int`         |   None      |  No       |
+----------------------+-------------------------+-------------+-----------+
| read_attr_hardware   | sequence<:py:obj:`int`> |   None      |  No       |
+----------------------+-------------------------+-------------+-----------+

Implementing a command
######################

Commands are defined as described above. Nevertheless, some methods implementing
them have to be written. These methods names are fixed and depend on command
name. They have to be called:

    - ``is_<Cmd_name>_allowed(self)``
    - ``<Cmd_name>(self, arg)``

For instance, with a command called *MyCmd*, its is_allowed method has to be
called `is_MyCmd_allowed` and its execution method has to be called simply *MyCmd*.
The following array gives some more info on these methods.

+-----------------------+-------------------------+--------------------+-----------+
|        Name           | Input par (with "self") | return value       | mandatory |
+=======================+=========================+====================+===========+
| is_<Cmd_name>_allowed |        None             | Python boolean     |  No       |
+-----------------------+-------------------------+--------------------+-----------+
|      Cmd_name         | Depends on cmd type     |Depends on cmd type |  Yes      |
+-----------------------+-------------------------+--------------------+-----------+

Please check :ref:`pytango-data-types` chapter to understand the data types
that can be used in command parameters and return values.

The following code is an example of how you write code executed when a client
calls a command named IOLong::

    def is_IOLong_allowed(self):
        self.debug_stream("in is_IOLong_allowed")
        return self.get_state() == tango.DevState.ON

    def IOLong(self, in_data):
        self.info_stream('IOLong', in_data)
        in_data = in_data * 2
        self.info_stream('IOLong returns', in_data)
        return in_data

**Line 1-3**
    the is_IOLong_allowed method determines in which conditions the command
    'IOLong' can be executed. In this case, the command can only be executed if
    the device is in 'ON' state.
**Line 6**
    write a log message to the tango INFO stream (click :ref:`here <logging>` for
    more information about PyTango log system).
**Line 7**
    does something with the input parameter
**Line 8**
    write another log message to the tango INFO stream (click :ref:`here <logging>` for
    more information about PyTango log system).
**Line 9**
    return the output of executing the tango command

Implementing an attribute
#########################

Attributes are defined as described in chapter 5.3.2. Nevertheless, some methods
implementing them have to be written. These methods names are fixed and depend
on attribute name. They have to be called:

    - ``is_<Attr_name>_allowed(self, req_type)``
    - ``read_<Attr_name>(self, attr)``
    - ``write_<Attr_name>(self, attr)``

For instance, with an attribute called *MyAttr*, its is_allowed method has to be
called *is_MyAttr_allowed*, its read method has to be called *read_MyAttr* and
its write method has to be called *write_MyAttr*.
The *attr* parameter is an instance of :class:`Attr`.
Unlike the commands, the is_allowed method for attributes receives a parameter
of type :class:`AttReqtype`.

Please check :ref:`pytango-data-types` chapter to understand the data types
that can be used in attribute.

The following code is an example of how you write code executed when a client
read an attribute which is called *Long_attr*::

    def read_Long_attr(self, the_att):
        self.info_stream("read attribute name Long_attr")
        the_att.set_value(self.attr_long)

**Line 1**
    Method declaration with "the_att" being an instance of the Attribute
    class representing the Long_attr attribute
**Line 2**
    write a log message to the tango INFO stream (click :ref:`here <logging>`
    for more information about PyTango log system).
**Line 3**
    Set the attribute value using the method set_value() with the attribute
    value as parameter.

The following code is an example of how you write code executed when a client
write the Short_attr_rw attribute::

    def write_Short_attr_rw(self,the_att):
        self.info_stream("In write_Short_attr_rw for attribute ",the_att.get_name())
        self.attr_short_rw = the_att.get_write_value(data)

**Line 1**
       Method declaration with "the_att" being an instance of the Attribute
       class representing the Short_attr_rw attribute
**Line 2**
    write a log message to the tango INFO stream (click :ref:`here <logging>` for
    more information about PyTango log system).
**Line 3**
    Get the value sent by the client using the method get_write_value() and
    store the value written in the device object. Our attribute is a scalar
    short attribute so the return value is an int