1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
import sys
import numpy as np
import pandas as pd
import pytest
from pytest_regressions.testing import check_regression_fixture_workflow
@pytest.fixture
def no_regen(num_regression, request):
if num_regression._force_regen or request.config.getoption("force_regen"):
pytest.fail("--force-regen should not be used on this test.")
def test_usage_workflow(pytester, monkeypatch):
monkeypatch.setattr(
sys, "testing_get_data", lambda: {"data": 1.1 * np.ones(50)}, raising=False
)
source = """
import sys
def test_1(num_regression):
contents = sys.testing_get_data()
num_regression.check(contents)
"""
def get_csv_contents():
filename = pytester.path / "test_file" / "test_1.csv"
frame = pd.read_csv(str(filename))
return {"data": frame["data"].values}
def compare_arrays(obtained, expected):
assert (obtained["data"] == expected["data"]).all()
check_regression_fixture_workflow(
pytester,
source=source,
data_getter=get_csv_contents,
data_modifier=lambda: monkeypatch.setattr(
sys, "testing_get_data", lambda: {"data": 1.2 * np.ones(50)}, raising=False
),
expected_data_1={"data": 1.1 * np.ones(50)},
expected_data_2={"data": 1.2 * np.ones(50)},
compare_fn=compare_arrays,
)
def test_common_cases(num_regression, no_regen):
# Most common case: Data is valid, is present and should pass
data1 = 1.1 * np.ones(5000)
data2 = 2.2 * np.ones(5000)
num_regression.check({"data1": data1, "data2": data2})
# Assertion error case 1: Data has one invalid place
data1 = 1.1 * np.ones(5000)
data2 = 2.2 * np.ones(5000)
data1[500] += 0.1
with pytest.raises(AssertionError) as excinfo:
num_regression.check({"data1": data1, "data2": data2})
obtained_error_msg = str(excinfo.value)
expected = "\n".join(
[
"Values are not sufficiently close.",
"To update values, use --force-regen option.",
]
)
assert expected in obtained_error_msg
expected = "\n".join(
[
"data1:",
" obtained_data1 expected_data1 diff",
"500 1.20000000000000018 1.10000000000000009 0.10000000000000009",
]
)
# prints used to debug #3
print()
print(expected)
print("-" * 200)
print(obtained_error_msg)
assert expected in obtained_error_msg
# Assertion error case 2: More than one invalid data
data1 = 1.1 * np.ones(5000)
data2 = 2.2 * np.ones(5000)
data1[500] += 0.1
data1[600] += 0.2
data2[700] += 0.3
with pytest.raises(AssertionError) as excinfo:
num_regression.check({"data1": data1, "data2": data2})
obtained_error_msg = str(excinfo.value)
expected = "\n".join(
[
"Values are not sufficiently close.",
"To update values, use --force-regen option.",
]
)
assert expected in obtained_error_msg
expected = "\n".join(
[
"data1:",
" obtained_data1 expected_data1 diff",
"500 1.20000000000000018 1.10000000000000009 0.10000000000000009",
"600 1.30000000000000004 1.10000000000000009 0.19999999999999996",
]
)
assert expected in obtained_error_msg
expected = "\n".join(
[
"data2:",
" obtained_data2 expected_data2 diff",
"700 2.5 2.20000000000000018 0.29999999999999982",
]
)
assert expected in obtained_error_msg
# Assertion error case 3: More than one invalid data
data1 = 1.1 * np.ones(5000)
data2 = 2.2 * np.ones(5000)
data1[500] += 0.01
data2[500] += 0.01
with pytest.raises(AssertionError) as excinfo:
num_regression.check(
{"data1": data1, "data2": data2},
tolerances={
"data1": dict(atol=1e-1, rtol=1e-17),
"data2": dict(atol=1e-17, rtol=1e-17),
},
)
obtained_error_msg = str(excinfo.value)
assert " data1:" not in obtained_error_msg
assert (
"\n".join(
[
"Values are not sufficiently close.",
"To update values, use --force-regen option.",
]
)
in obtained_error_msg
)
assert (
"\n".join(
[
"data2:",
" obtained_data2 expected_data2 diff",
"500 2.20999999999999996 2.20000000000000018 0.00999999999999979",
]
)
in obtained_error_msg
)
def test_different_data_types(num_regression, no_regen):
data1 = np.ones(10)
# Smoke test: Should not raise any exception
num_regression.check({"data1": data1})
data2 = np.array(["a"] * 10)
with pytest.raises(
AssertionError,
match="Data type for data data1 of obtained and expected are not the same.",
):
num_regression.check({"data1": data2})
def test_n_dimensions(num_regression, no_regen):
data1 = np.ones(shape=(10, 10), dtype=int)
with pytest.raises(
AssertionError,
match="Only 1D arrays are supported on num_data_regression fixture.",
):
num_regression.check({"data1": data1})
def test_arrays_with_different_sizes(num_regression, no_regen):
data1 = np.ones(10, dtype=np.float64)
with pytest.raises(
AssertionError, match="Obtained and expected data shape are not the same."
):
num_regression.check({"data1": data1})
def test_integer_values_smoke_test(num_regression, no_regen):
data1 = np.ones(11, dtype=int)
num_regression.check({"data1": data1})
def test_number_formats(num_regression, no_regen):
data1 = np.array([1.2345678e50, 1.2345678e-50, 0.0])
num_regression.check({"data1": data1})
def test_fill_different_shape_with_nan(num_regression, no_regen):
data1 = np.ones(5, dtype=np.float64)
data2 = np.ones(2, dtype=np.float32)
data3 = np.ones(6, dtype=np.float16)
num_regression.check({"data1": data1, "data2": data2, "data3": data3})
def test_fill_different_shape_with_nan_false(num_regression, no_regen):
data1 = np.ones(5, dtype=np.float64)
data2 = np.ones(2, dtype=np.float32)
data3 = np.ones(6, dtype=np.float16)
with pytest.raises(
AssertionError,
match="Data dict with different array lengths will not be accepted.",
):
num_regression.check(
{"data1": data1, "data2": data2, "data3": data3},
fill_different_shape_with_nan=False,
)
def test_fill_different_shape_with_nan_for_non_float_array(num_regression, no_regen):
data1 = np.ones(5, dtype=np.int32)
data2 = np.ones(2, dtype=np.float64)
data3 = np.ones(6, dtype=np.float64)
with pytest.raises(
TypeError,
match="Checking multiple arrays with different shapes are not supported for non-float arrays",
):
num_regression.check({"data1": data1, "data2": data2, "data3": data3})
def test_bool_array(num_regression, no_regen):
data1 = np.array([True, True, True], dtype=bool)
with pytest.raises(AssertionError) as excinfo:
num_regression.check({"data1": data1})
obtained_error_msg = str(excinfo.value)
expected = "\n".join(
[
"Values are not sufficiently close.",
"To update values, use --force-regen option.",
]
)
assert expected in obtained_error_msg
expected = "\n".join(
[
"data1:",
" obtained_data1 expected_data1 diff",
"0 True False True",
"1 True False True",
"2 True False True",
]
)
assert expected in obtained_error_msg
def test_arrays_of_same_size(num_regression):
same_size_int_arrays = {
"hello": np.zeros((1,), dtype=int),
"world": np.zeros((1,), dtype=int),
}
num_regression.check(same_size_int_arrays)
def test_simple_numbers(num_regression, data_regression):
data1 = 1.1
data2 = 2
num_regression.check({"data1": data1, "data2": data2})
data_regression.check({"data1": data1, "data2": data2})
data1 += 0.00000001
num_regression.check({"data1": data1, "data2": data2}) # passes, within tol
with pytest.raises(
AssertionError,
match="FILES DIFFER.*",
):
data_regression.check({"data1": data1, "data2": data2}) # fails, must be exact
def test_simple_list_of_numbers(num_regression):
data1 = [1.1, 1.1, 1.1]
data2 = [2, 2, 2]
num_regression.check({"data1": data1, "data2": data2})
def test_simple_tuple_of_numbers(num_regression):
data1 = (1.1, 1.1, 1.1)
data2 = (2, 2, 2)
num_regression.check({"data1": data1, "data2": data2})
def test_simple_list_of_mostly_numbers(num_regression):
data1 = [1.1, "not a number", 1.1]
data2 = [2, 2, 2]
with pytest.raises(
AssertionError,
match="Only objects that can be coerced to numpy arrays are valid for numeric_data_regression fixture.",
):
num_regression.check({"data1": data1, "data2": data2})
def test_array_dtype_stored_correctly(num_regression):
"""
Related to bug #84, where data type was being stored incorrectly due to np.nan values in array.
Problem would only occur if the compared data has any difference, when evaluated as string.
..see: https://github.com/ESSS/pytest-regressions/issues/84
"""
data1 = np.array([1.100001, np.nan, 1.1])
num_regression.check({"data1": data1})
|