File: SigmaGeneric.cc

package info (click to toggle)
pythia8 8.1.65-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 22,660 kB
  • sloc: cpp: 59,593; xml: 30,509; php: 6,649; sh: 796; makefile: 353; ansic: 33
file content (433 lines) | stat: -rw-r--r-- 14,205 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
// SigmaGeneric.cc is a part of the PYTHIA event generator.
// Copyright (C) 2012 Johan Bijnens, Torbjorn Sjostrand.
// PYTHIA is licenced under the GNU GPL version 2, see COPYING for details.
// Please respect the MCnet Guidelines, see GUIDELINES for details.

// Function definitions (not found in the header) for various generic 
// production processes, to be used as building blocks for some BSM processes.
// Currently represented by QCD pair production of colour triplet objects,
// with spin either 0, 1/2 or 1.

// Cross sections are only provided for fixed m3 = m4, so do some gymnastics:
// i) s34Avg picked so that beta34 same when s3, s4 -> s34Avg.
// ii) tHQ = tH - mQ^2 = -0.5 sH (1 - beta34 cos(thetaH)) for m3 = m4 = mQ,
//     but tH - uH = sH beta34 cos(thetaH) also for m3 != m4, so use
//     tH, uH selected for m3 != m4 to derive tHQ, uHQ valid for m3 = m4.   

#include "SigmaGeneric.h"

namespace Pythia8 {

//==========================================================================

// Sigma2gg2qGqGbar class.
// Cross section for g g -> qG qGbar (generic quark of spin 0, 1/2 or 1). 

//--------------------------------------------------------------------------

// Initialize process. 
  
void Sigma2gg2qGqGbar::initProc() {

  // Number of colours. Anomalous coupling kappa - 1 used for vector state.
  nCHV         = settingsPtr->mode("HiddenValley:Ngauge");
  kappam1      = settingsPtr->parm("HiddenValley:kappa") - 1.;
  hasKappa     = (abs(kappam1) > 1e-8);

  // Secondary open width fraction.
  openFracPair = particleDataPtr->resOpenFrac(idNew, -idNew);
  
} 

//--------------------------------------------------------------------------

// Evaluate d(sigmaHat)/d(tHat), part independent of incoming flavour. 

void Sigma2gg2qGqGbar::sigmaKin() { 

  // Modified Mandelstam variables for massive kinematics with m3 = m4.
  double delta  = 0.25 * pow2(s3 - s4) / sH;
  double s34Avg = 0.5 * (s3 + s4) - delta; 
  double tHavg  = tH - delta;
  double uHavg  = uH - delta;
  double tHQ    = -0.5 * (sH - tH + uH);
  double uHQ    = -0.5 * (sH + tH - uH); 
  double tHQ2   = tHQ * tHQ;
  double uHQ2   = uHQ * uHQ;

  //  Evaluate cross section for spin 0 colour triplet.
  if (spinSave == 0) {   
    sigSum = 0.5 * ( 7. / 48. + 3. * pow2(uHavg - tHavg) / (16. * sH2) )
      * ( 1. + 2. * s34Avg * tHavg / pow2(tHavg - s34Avg) 
      + 2. * s34Avg * uHavg / pow2(uHavg - s34Avg)
      + 4. * pow2(s34Avg) / ((tHavg - s34Avg) * (uHavg - s34Avg)) );

    // Equal probability for two possible colour flows.
    sigTS = 0.5 * sigSum;
    sigUS = sigTS;
  }

  //  Evaluate cross section for spin 1/2 colour triplet.
  else if (spinSave == 1) {   
    double tumHQ = tHQ * uHQ - s34Avg * sH;
    sigTS = ( uHQ / tHQ - 2.25 * uHQ2 / sH2 + 4.5 * s34Avg * tumHQ 
      / ( sH * tHQ2) + 0.5 * s34Avg * (tHQ + s34Avg) / tHQ2 
      - s34Avg*s34Avg / (sH * tHQ) ) / 6.;
    sigUS = ( tHQ / uHQ - 2.25 * tHQ2 / sH2 + 4.5 * s34Avg * tumHQ 
      / ( sH * uHQ2) + 0.5 * s34Avg * (uHQ + s34Avg) / uHQ2 
      - s34Avg*s34Avg / (sH * uHQ) ) / 6.;
    sigSum = sigTS + sigUS;
  }

  //  Evaluate cross section for spin 1 colour triplet.
  else { 
    double tmu      = tHavg - uHavg;
    double s34Pos   = s34Avg / sH;
    double s34Pos2  = s34Pos * s34Pos;
    double s34Neg   = sH / s34Avg;
    double s34Neg2  = s34Neg * s34Neg;
    sigSum = pow2(tmu) * sH2 * (241./1536. - 1./32. * s34Pos 
        + 9./16. * s34Pos2)
      + pow4(tmu) * (37./512. + 9./64. * s34Pos)
      + pow6(tmu) * (9./512. / sH2)  
      + sH2 * sH2 * (133./1536. - 7./64. * s34Pos + 7./16. * s34Pos2); 

    // Anomalous coupling.
    if (hasKappa) 
    sigSum += pow2(tmu) * sH2 * (kappam1 * (143./384. - 7./3072 * s34Neg) 
      + pow2(kappam1) * (- 1./768. * s34Neg + 185./768.)
      + pow3(kappam1) * (- 7./3072. *  s34Neg2 
        - 25./3072. * s34Neg + 67./1536.) 
      + pow4(kappam1) * (- 37./49152. * s34Neg2
        - 25./6144. * s34Neg + 5./1536.) )
      + pow4(tmu) * (kappam1 * 3./32.  
      + pow2(kappam1) * (7./6144. * s34Neg2 - 7./768. * s34Neg + 3./128.) 
      + pow3(kappam1) * (7./6144. * s34Neg2 - 7./1536. * s34Neg)
      + pow4(kappam1) * (- 1./49152. * s34Neg2 + 5./6144. * s34Neg) )
      + pow6(tmu) * pow4(kappam1) * 13./49152. / pow2(s34Avg)
      + sH2 * sH2 * ( kappam1 * 77./384. 
      + pow2(kappam1) * (7./6144. * s34Neg2 + 1./96.* s34Neg + 39./256.) 
      + pow3(kappam1) * (7./6144. * s34Neg2 + 13./1024. * s34Neg + 61./1536.)
      + pow4(kappam1) * (25./49152. * s34Neg2 + 5./1536. * s34Neg + 1./512.) 
      );

    // Equal probability for two possible colour flows.
    sigSum /= pow2( (uHavg-s34Avg) * (tHavg-s34Avg) );
    sigTS = 0.5 * sigSum;
    sigUS = sigTS;
  }

  // Final answer, with common factors.
  sigma = (M_PI / sH2) * pow2(alpS) * sigSum * nCHV * openFracPair;  

}

//--------------------------------------------------------------------------

// Select identity, colour and anticolour.

void Sigma2gg2qGqGbar::setIdColAcol() {

  // Flavours trivial.
  setId( 21, 21, idNew, -idNew);

  // Two colour flow topologies.
  double sigRand = sigSum * rndmPtr->flat();
  if (sigRand < sigTS) setColAcol( 1, 2, 2, 3, 1, 0, 0, 3);
  else                 setColAcol( 1, 2, 3, 1, 3, 0, 0, 2); 

}

//==========================================================================

// Sigma2qqbar2qGqGbar class.
// Cross section for q qbar -> qG qGbar (generic quark of spin 0, 1/2 or 1). 

//--------------------------------------------------------------------------

// Initialize process. 
  
void Sigma2qqbar2qGqGbar::initProc() {

  // Number of colours. Coupling kappa used for vector state.
  nCHV         = settingsPtr->mode("HiddenValley:Ngauge");
  kappa        = settingsPtr->parm("HiddenValley:kappa");

   // Secondary open width fraction.
  openFracPair = particleDataPtr->resOpenFrac(idNew, -idNew);

} 

//--------------------------------------------------------------------------

// Evaluate d(sigmaHat)/d(tHat), part independent of incoming flavour. 

void Sigma2qqbar2qGqGbar::sigmaKin() { 

  // Modified Mandelstam variables for massive kinematics with m3 = m4.
  double delta  = 0.25 * pow2(s3 - s4) / sH;
  double s34Avg = 0.5 * (s3 + s4) - delta; 
  double tHavg  = tH - delta;
  double uHavg  = uH - delta;
  double tHQ    = -0.5 * (sH - tH + uH);
  double uHQ    = -0.5 * (sH + tH - uH); 
  double tHQ2   = tHQ * tHQ;
  double uHQ2   = uHQ * uHQ;

  //  Evaluate cross section for spin 0 colour triplet.
  if (spinSave == 0) {   
    sigSum = (1./9.) * (sH * (sH - 4. * s34Avg) 
      - pow2(uHavg - tHavg)) / sH2;
  }

  //  Evaluate cross section for spin 1/2 colour triplet.
  else if (spinSave == 1) {   
    sigSum = (4./9.) * ((tHQ2 + uHQ2) / sH2 + 2. * s34Avg / sH); 
  }

  //  Evaluate cross section for spin 1 colour triplet.
  else {  
    double tuH34 = (tHavg + uHavg) / s34Avg; 
    sigSum = (1./9.) * ( 
      pow2(1. + kappa) * sH * s34Avg * (pow2(tuH34) - 4.)
      + (tHavg * uHavg - pow2(s34Avg)) * (8. + 2. * (1. - pow2(kappa)) * tuH34 
      + pow2(kappa) * pow2(tuH34)) ) / sH2;
  }

  // Final answer, with common factors.
  sigma = (M_PI / sH2) * pow2(alpS) * sigSum * nCHV * openFracPair;  

}

//--------------------------------------------------------------------------

// Select identity, colour and anticolour.

void Sigma2qqbar2qGqGbar::setIdColAcol() {

  // Flavours trivial.
  setId( id1, id2, idNew, -idNew);

  // tH defined between f and qG: must swap tHat <-> uHat if qbar q in.
  swapTU = (id1 < 0); 

  // Colour flow topologies.
  if (id1 > 0) setColAcol( 1, 0, 0, 2, 1, 0, 0, 2);
  else         setColAcol( 0, 2, 1, 0, 1, 0, 0, 2);

}

//==========================================================================

// Sigma2ffbar2fGfGbar class.
// Cross section for f fbar -> qG qGbar (generic quark of spin 0, 1/2 or 1)
// via gamma^*/Z^* s-channel exchange. Still under development!! ??  

//--------------------------------------------------------------------------

// Initialize process. 
  
void Sigma2ffbar2fGfGbar::initProc() {

  // Charge and number of colours. Coupling kappa used for vector state.
  if (settingsPtr->flag("HiddenValley:doKinMix"))
    eQHV2      = pow2(settingsPtr->parm("HiddenValley:kinMix"));
  else
    eQHV2      = pow2( particleDataPtr->charge(idNew) ); 
  nCHV         = settingsPtr->mode("HiddenValley:Ngauge");
  kappa        = settingsPtr->parm("HiddenValley:kappa");

  // Coloured or uncoloured particle.
  hasColour    = (particleDataPtr->colType(idNew) != 0);
  colFac       = (hasColour) ? 3. : 1.;

   // Secondary open width fraction.
  openFracPair = particleDataPtr->resOpenFrac(idNew, -idNew);

} 

//--------------------------------------------------------------------------

// Evaluate d(sigmaHat)/d(tHat), part independent of incoming flavour. 

void Sigma2ffbar2fGfGbar::sigmaKin() { 

  // Modified Mandelstam variables for massive kinematics with m3 = m4.
  double delta  = 0.25 * pow2(s3 - s4) / sH;
  double s34Avg = 0.5 * (s3 + s4) - delta; 
  double tHavg  = tH - delta;
  double uHavg  = uH - delta;
  double tHQ    = -0.5 * (sH - tH + uH);
  double uHQ    = -0.5 * (sH + tH - uH); 
  double tHQ2   = tHQ * tHQ;
  double uHQ2   = uHQ * uHQ;

  //  Evaluate cross section for spin 0 colour triplet.
  if (spinSave == 0) {   
    sigSum = 0.5 * (sH * (sH - 4. * s34Avg) - pow2(uHavg - tHavg)) / sH2;
  }

  //  Evaluate cross section for spin 1/2 colour triplet.
  else if (spinSave == 1) {   
    sigSum = 2. * ((tHQ2 + uHQ2) / sH2 + 2. * s34Avg / sH); 
  }

  //  Evaluate cross section for spin 1 colour triplet.
  else {  
    double tuH34 = (tHavg + uHavg) / s34Avg; 
    sigSum = 0.5 * ( pow2(1. + kappa) * sH * s34Avg * (pow2(tuH34) - 4.)
      + (tHavg * uHavg - pow2(s34Avg)) * (8. + 2. * (1. - pow2(kappa)) * tuH34 
      + pow2(kappa) * pow2(tuH34)) ) / sH2;
  }

  // Final-state charge factors.
  sigSum *= colFac * eQHV2 * (1. + alpS / M_PI);

  // Final answer, except for initial-state weight
  sigma0 = (M_PI / sH2) * pow2(alpEM) * sigSum * nCHV * openFracPair;  

}

//--------------------------------------------------------------------------

// Evaluate d(sigmaHat)/d(tHat), including incoming flavour dependence. 

double Sigma2ffbar2fGfGbar::sigmaHat() { 

  // Charge and colour factors.
  double eNow  = couplingsPtr->ef( abs(id1) );    
  double sigma = sigma0 * pow2(eNow);
  if (abs(id1) < 9) sigma /= 3.;

  // Answer.
  return sigma;    

}

//--------------------------------------------------------------------------

// Select identity, colour and anticolour.

void Sigma2ffbar2fGfGbar::setIdColAcol() {

  // Flavours trivial.
  setId( id1, id2, idNew, -idNew);

  // tH defined between f and qG: must swap tHat <-> uHat if fbar f in.
  swapTU = (id1 < 0); 

  // Colour flow topologies.
  if (hasColour) {
    if (id1 > 0 && id1 < 7)       setColAcol( 1, 0, 0, 1, 2, 0, 0, 2);
    else if (id1 > -7 && id1 < 0) setColAcol( 0, 1, 1, 0, 2, 0, 0, 2);
    else                          setColAcol( 0, 0, 0, 0, 1, 0, 0, 1);
  } else {
    if (id1 > 0 && id1 < 7)       setColAcol( 1, 0, 0, 1, 0, 0, 0, 0);
    else if (id1 > -7 && id1 < 0) setColAcol( 0, 1, 1, 0, 0, 0, 0, 0);
    else                          setColAcol( 0, 0, 0, 0, 0, 0, 0, 0);
  }

}

//==========================================================================

// Sigma1ffbar2Zv class.
// Cross section for f fbar -> Zv, where Zv couples both to the SM and 
// to a hidden sector. Primitive coupling structure.

//--------------------------------------------------------------------------

// Initialize process. 
  
void Sigma1ffbar2Zv::initProc() {

  // Store Zv mass and width for propagator. 
  idZv     = 4900023;
  mRes     = particleDataPtr->m0(idZv);
  GammaRes = particleDataPtr->mWidth(idZv);
  m2Res    = mRes*mRes;
  GamMRat  = GammaRes / mRes;

  // Set pointer to particle properties and decay table.
  particlePtr = particleDataPtr->particleDataEntryPtr(idZv);
  
} 

//--------------------------------------------------------------------------

// Evaluate sigmaHat(sHat); first step when inflavours unknown. 

void Sigma1ffbar2Zv::sigmaKin() { 

  // Breit-Wigner, including some (guessed) spin factors.
  double sigBW    = 12. * M_PI / ( pow2(sH - m2Res) + pow2(sH * GamMRat) ); 

  // Outgoing width: only includes channels left open.
  double widthOut = particlePtr->resWidthOpen(663, mH);    

  // Temporary answer.
  sigOut = sigBW * widthOut;

}

//--------------------------------------------------------------------------

// Evaluate sigmaHat(sHat); second step when inflavours known. 

double Sigma1ffbar2Zv::sigmaHat() { 

  // Incoming quark or lepton; for former need two 1/3 colour factors.
  int id1Abs     = abs(id1);
  double widthIn = particlePtr->resWidthChan( mH, id1Abs, -id1Abs);
  if (id1Abs < 6) widthIn /= 9.;
  return widthIn * sigOut;

}

//--------------------------------------------------------------------------

// Select identity, colour and anticolour.

void Sigma1ffbar2Zv::setIdColAcol() {

  // Flavours trivial.
  setId( id1, id2, idZv);

  // Colour flow topologies. Swap when antiquarks.
  if (abs(id1) < 6) setColAcol( 1, 0, 0, 1, 0, 0);
  else              setColAcol( 0, 0, 0, 0, 0, 0);
  if (id1 < 0) swapColAcol();

}

//--------------------------------------------------------------------------

// Evaluate weight for decay angles.

double Sigma1ffbar2Zv::weightDecay( Event& process, int iResBeg,
  int iResEnd) {

  // Identity of mother of decaying resonance(s).
  int idMother = process[process[iResBeg].mother1()].idAbs();

  // For Z' itself angular distribution as if gamma*.
  if (iResBeg == 5 && iResEnd == 5) {
    double mr     = 4. * pow2(process[6].m()) / sH;
    double cosThe = (process[3].p() - process[4].p()) 
      * (process[7].p() - process[6].p()) / (sH * sqrtpos(1. - mr));
    double wt     = 1. + pow2(cosThe) + mr * (1. - pow2(cosThe));
    return 0.5 * wt;
  } 

  // For top decay hand over to standard routine.
  if (idMother == 6) 
    return weightTopDecay( process, iResBeg, iResEnd);

  // Else done.
  return 1.; 

}

//==========================================================================

} // end namespace Pythia8