File: SigmaTotal.cc

package info (click to toggle)
pythia8 8.1.65-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 22,660 kB
  • sloc: cpp: 59,593; xml: 30,509; php: 6,649; sh: 796; makefile: 353; ansic: 33
file content (557 lines) | stat: -rw-r--r-- 21,482 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
// SigmaTotal.cc is a part of the PYTHIA event generator.
// Copyright (C) 2012 Torbjorn Sjostrand.
// PYTHIA is licenced under the GNU GPL version 2, see COPYING for details.
// Please respect the MCnet Guidelines, see GUIDELINES for details.

// Function definitions (not found in the header) for the SigmaTotal class.

#include "SigmaTotal.h"

namespace Pythia8 {

//==========================================================================

// The SigmaTotal class.

// Formulae are taken from:
// G.A. Schuler and T. Sjostrand, Phys. Rev. D49 (1994) 2257,
//   Z. Phys. C73 (1997) 677 
// which borrows some total cross sections from
// A. Donnachie and P.V. Landshoff, Phys. Lett. B296 (1992) 227.

// Implemented processes with their process number iProc:
// =  0 : p + p;     =  1 : pbar + p;
// =  2 : pi+ + p;   =  3 : pi- + p;     =  4 : pi0/rho0 + p; 
// =  5 : phi + p;   =  6 : J/psi + p;
// =  7 : rho + rho; =  8 : rho + phi;   =  9 : rho + J/psi;
// = 10 : phi + phi; = 11 : phi + J/psi; = 12 : J/psi + J/psi.  
// = 13 : Pom + p (preliminary). 

//--------------------------------------------------------------------------
 
// Definitions of static variables.
// Note that a lot of parameters are hardcoded as const here, rather 
// than being interfaced for public change, since any changes would
// have to be done in a globally consistent manner. Which basically 
// means a rewrite/replacement of the whole class.

// Minimum threshold below which no cross sections will be defined.
const double SigmaTotal::MMIN  = 2.; 

// General constants in total cross section parametrization:
// sigmaTot = X * s^epsilon + Y * s^eta (pomeron + reggeon).
const double SigmaTotal::EPSILON = 0.0808;
const double SigmaTotal::ETA     = -0.4525;
const double SigmaTotal::X[] = { 21.70, 21.70, 13.63, 13.63, 13.63, 
  10.01, 0.970, 8.56, 6.29, 0.609, 4.62, 0.447, 0.0434};
const double SigmaTotal::Y[] = { 56.08, 98.39, 27.56, 36.02, 31.79, 
  1.51, -0.146, 13.08, -0.62, -0.060, 0.030, -0.0028, 0.00028};

// Type of the two incoming hadrons as function of the process number:
// = 0 : p/n ; = 1 : pi/rho/omega; = 2 : phi; = 3 : J/psi.
const int SigmaTotal::IHADATABLE[] = { 0, 0, 1, 1, 1, 2, 3, 1, 1, 
  1, 2, 2, 3};
const int SigmaTotal::IHADBTABLE[] = { 0, 0, 0, 0, 0, 0, 0, 1, 2, 
  3, 2, 3, 3};

// Hadron-Pomeron coupling beta(t) = beta(0) * exp(b*t).
const double SigmaTotal::BETA0[] = { 4.658, 2.926, 2.149, 0.208}; 
const double SigmaTotal::BHAD[]  = {   2.3,   1.4,   1.4,  0.23};

// Pomeron trajectory alpha(t) = 1 + epsilon + alpha' * t
const double SigmaTotal::ALPHAPRIME = 0.25; 

// Conversion coefficients = 1/(16pi) * (mb <-> GeV^2) * (G_3P)^n,
// with n = 0 elastic, n = 1 single and n = 2 double diffractive. 
const double SigmaTotal::CONVERTEL = 0.0510925;
const double SigmaTotal::CONVERTSD = 0.0336;  
const double SigmaTotal::CONVERTDD = 0.0084;  

// Diffractive mass spectrum starts at m + MMIN0 and has a low-mass 
// enhancement, factor cRes, up to around m + mRes0.
const double SigmaTotal::MMIN0 = 0.28; 
const double SigmaTotal::CRES  = 2.0; 
const double SigmaTotal::MRES0 = 1.062;

// Parameters and coefficients for single diffractive scattering.
const int SigmaTotal::ISDTABLE[] = { 0, 0, 1, 1, 1, 2, 3, 4, 5, 
  6, 7, 8, 9}; 
const double SigmaTotal::CSD[10][8] = {
  { 0.213, 0.0, -0.47, 150., 0.213, 0.0, -0.47, 150., } , 
  { 0.213, 0.0, -0.47, 150., 0.267, 0.0, -0.47, 100., } ,
  { 0.213, 0.0, -0.47, 150., 0.232, 0.0, -0.47, 110., } ,
  { 0.213, 7.0, -0.55, 800., 0.115, 0.0, -0.47, 110., } ,
  { 0.267, 0.0, -0.46,  75., 0.267, 0.0, -0.46,  75., } ,
  { 0.232, 0.0, -0.46,  85., 0.267, 0.0, -0.48, 100., } ,
  { 0.115, 0.0, -0.50,  90., 0.267, 6.0, -0.56, 420., } ,
  { 0.232, 0.0, -0.48, 110., 0.232, 0.0, -0.48, 110., } ,
  { 0.115, 0.0, -0.52, 120., 0.232, 6.0, -0.56, 470., } ,
  { 0.115, 5.5, -0.58, 570., 0.115, 5.5, -0.58, 570.  } };

// Parameters and coefficients for double diffractive scattering.
const int SigmaTotal::IDDTABLE[] = { 0, 0, 1, 1, 1, 2, 3, 4, 5, 
  6, 7, 8, 9}; 
const double SigmaTotal::CDD[10][9] = {
  { 3.11, -7.34,  9.71, 0.068, -0.42, 1.31, -1.37,  35.0,  118., } ,  
  { 3.11, -7.10,  10.6, 0.073, -0.41, 1.17, -1.41,  31.6,   95., } ,
  { 3.12, -7.43,  9.21, 0.067, -0.44, 1.41, -1.35,  36.5,  132., } ,  
  { 3.13, -8.18, -4.20, 0.056, -0.71, 3.12, -1.12,  55.2, 1298., } ,
  { 3.11, -6.90,  11.4, 0.078, -0.40, 1.05, -1.40,  28.4,   78., } , 
  { 3.11, -7.13,  10.0, 0.071, -0.41, 1.23, -1.34,  33.1,  105., } ,
  { 3.12, -7.90, -1.49, 0.054, -0.64, 2.72, -1.13,  53.1,  995., } , 
  { 3.11, -7.39,  8.22, 0.065, -0.44, 1.45, -1.36,  38.1,  148., } ,
  { 3.18, -8.95, -3.37, 0.057, -0.76, 3.32, -1.12,  55.6, 1472., } ,  
  { 4.18, -29.2,  56.2, 0.074, -1.36, 6.67, -1.14, 116.2, 6532.  } };
const double SigmaTotal::SPROTON = 0.880;
  
// MBR parameters. Integration of MBR cross section.
const int    SigmaTotal::NINTEG = 1000;
const int    SigmaTotal::NINTEG2 = 40;
const double SigmaTotal::HBARC2 = 0.38938;
// MBR: form factor appoximation with two exponents, [FFB1,FFB2] = GeV^-2.
const double SigmaTotal::FFA1 = 0.9;
const double SigmaTotal::FFA2 = 0.1;
const double SigmaTotal::FFB1 = 4.6;
const double SigmaTotal::FFB2 = 0.6;

//--------------------------------------------------------------------------

// Store pointer to Info and initialize data members.

void SigmaTotal::init(Info* infoPtrIn, Settings& settings,
  ParticleData* particleDataPtrIn) {

  // Store pointers.
  infoPtr         = infoPtrIn;
  particleDataPtr = particleDataPtrIn;

  // User-set values for cross sections.  
  setTotal   = settings.flag("SigmaTotal:setOwn");
  sigTotOwn  = settings.parm("SigmaTotal:sigmaTot");
  sigElOwn   = settings.parm("SigmaTotal:sigmaEl");
  sigXBOwn   = settings.parm("SigmaTotal:sigmaXB");
  sigAXOwn   = settings.parm("SigmaTotal:sigmaAX");
  sigXXOwn   = settings.parm("SigmaTotal:sigmaXX");
  sigAXBOwn  = settings.parm("SigmaTotal:sigmaAXB");

  // User-set values to dampen diffractive cross sections.
  doDampen   = settings.flag("SigmaDiffractive:dampen");
  maxXBOwn   = settings.parm("SigmaDiffractive:maxXB");
  maxAXOwn   = settings.parm("SigmaDiffractive:maxAX");
  maxXXOwn   = settings.parm("SigmaDiffractive:maxXX");

  // User-set values for handling of elastic sacattering. 
  setElastic = settings.flag("SigmaElastic:setOwn");
  bSlope     = settings.parm("SigmaElastic:bSlope");  
  rho        = settings.parm("SigmaElastic:rho");  
  lambda     = settings.parm("SigmaElastic:lambda");  
  tAbsMin    = settings.parm("SigmaElastic:tAbsMin");  
  alphaEM0   = settings.parm("StandardModel:alphaEM0");

  // Parameters for diffractive systems.
  sigmaPomP  = settings.parm("Diffraction:sigmaRefPomP");
  mPomP      = settings.parm("Diffraction:mRefPomP");
  pPomP      = settings.parm("Diffraction:mPowPomP");
  
  // Parameters for MBR model.
 PomFlux      = settings.mode("Diffraction:PomFlux"); 
  MBReps      = settings.parm("Diffraction:MBRepsilon");
  MBRalpha    = settings.parm("Diffraction:MBRalpha");
  MBRbeta0    = settings.parm("Diffraction:MBRbeta0");
  MBRsigma0   = settings.parm("Diffraction:MBRsigma0");
  m2min       = settings.parm("Diffraction:MBRm2Min");
  dyminSDflux = settings.parm("Diffraction:MBRdyminSDflux");
  dyminDDflux = settings.parm("Diffraction:MBRdyminDDflux");  
  dyminCDflux = settings.parm("Diffraction:MBRdyminCDflux");
  dyminSD     = settings.parm("Diffraction:MBRdyminSD");
  dyminDD     = settings.parm("Diffraction:MBRdyminDD");
  dyminCD     = settings.parm("Diffraction:MBRdyminCD");
  dyminSigSD  = settings.parm("Diffraction:MBRdyminSigSD");
  dyminSigDD  = settings.parm("Diffraction:MBRdyminSigDD");
  dyminSigCD  = settings.parm("Diffraction:MBRdyminSigCD");

}

//--------------------------------------------------------------------------

// Function that calculates the relevant properties.

bool SigmaTotal::calc( int idA, int idB, double eCM) {

  // Derived quantities.
  alP2 = 2. * ALPHAPRIME;
  s0   = 1. / ALPHAPRIME;

  // Reset everything to zero to begin with.
  isCalc = false;
  sigTot = sigEl = sigXB = sigAX = sigXX = sigAXB = sigND = bEl = s 
    = bA = bB = 0.;

  // Order flavour of incoming hadrons: idAbsA < idAbsB (restore later).
  int idAbsA = abs(idA);
  int idAbsB = abs(idB);
  bool swapped = false;
  if (idAbsA > idAbsB) {
    swap( idAbsA, idAbsB);
    swapped = true;
  } 
  double sameSign = (idA * idB > 0);

  // Find process number.
  int iProc                                       = -1;
  if (idAbsA > 1000) {
    iProc                                         = (sameSign) ? 0 : 1;
  } else if (idAbsA > 100 && idAbsB > 1000) {
    iProc                                         = (sameSign) ? 2 : 3;
    if (idAbsA/10 == 11 || idAbsA/10 == 22) iProc = 4;
    if (idAbsA > 300) iProc                       = 5;
    if (idAbsA > 400) iProc                       = 6;
    if (idAbsA > 900) iProc                       = 13;
  } else if (idAbsA > 100) {    
    iProc                                         = 7;
    if (idAbsB > 300) iProc                       = 8;
    if (idAbsB > 400) iProc                       = 9;
    if (idAbsA > 300) iProc                       = 10;
    if (idAbsA > 300 && idAbsB > 400) iProc       = 11;
    if (idAbsA > 400) iProc                       = 12;
  }
  if (iProc == -1) return false;

  // Primitive implementation of Pomeron + p.
  if (iProc == 13) {
    s      = eCM*eCM;
    sigTot = sigmaPomP * pow( eCM / mPomP, pPomP);
    sigND  = sigTot;
    isCalc = true;
    return true;
  }

  // Find hadron masses and check that energy is enough.
  // For mesons use the corresponding vector meson masses.
  int idModA = (idAbsA > 1000) ? idAbsA : 10 * (idAbsA/10) + 3; 
  int idModB = (idAbsB > 1000) ? idAbsB : 10 * (idAbsB/10) + 3; 
  double mA  = particleDataPtr->m0(idModA);
  double mB  = particleDataPtr->m0(idModB);
  if (eCM < mA + mB + MMIN) {
    infoPtr->errorMsg("Error in SigmaTotal::calc: too low energy");
    return false;
  }
  
  // Evaluate the total cross section.
  s           = eCM*eCM;
  double sEps = pow( s, EPSILON);
  double sEta = pow( s, ETA);
  sigTot      = X[iProc] * sEps + Y[iProc] * sEta;

  // Slope of hadron form factors.
  int iHadA = IHADATABLE[iProc];
  int iHadB = IHADBTABLE[iProc];  
  bA        = BHAD[iHadA];
  bB        = BHAD[iHadB];
   
  // Elastic slope parameter and cross section.
  bEl   = 2.*bA + 2.*bB + 4.*sEps - 4.2;
  sigEl = CONVERTEL * pow2(sigTot) / bEl;

  // Lookup coefficients for single and double diffraction.
  int iSD = ISDTABLE[iProc];
  int iDD = IDDTABLE[iProc];
  double sum1, sum2, sum3, sum4;

  // Single diffractive scattering A + B -> X + B cross section.
  mMinXBsave      = mA + MMIN0;
  double sMinXB   = pow2(mMinXBsave);
  mResXBsave      = mA + MRES0;
  double sResXB   = pow2(mResXBsave);
  double sRMavgXB = mResXBsave * mMinXBsave;
  double sRMlogXB = log(1. + sResXB/sMinXB);
  double sMaxXB   = CSD[iSD][0] * s + CSD[iSD][1];
  double BcorrXB  = CSD[iSD][2] + CSD[iSD][3] / s;
  sum1  = log( (2.*bB + alP2 * log(s/sMinXB)) 
    / (2.*bB + alP2 * log(s/sMaxXB)) ) / alP2; 
  sum2  = CRES * sRMlogXB / (2.*bB + alP2 * log(s/sRMavgXB) + BcorrXB) ; 
  sigXB = CONVERTSD * X[iProc] * BETA0[iHadB] * max( 0., sum1 + sum2);

  // Single diffractive scattering A + B -> A + X cross section.
  mMinAXsave      = mB + MMIN0;
  double sMinAX   = pow2(mMinAXsave);
  mResAXsave      = mB + MRES0;
  double sResAX   = pow2(mResAXsave);
  double sRMavgAX = mResAXsave * mMinAXsave;
  double sRMlogAX = log(1. + sResAX/sMinAX);
  double sMaxAX   = CSD[iSD][4] * s + CSD[iSD][5];
  double BcorrAX  = CSD[iSD][6] + CSD[iSD][7] / s;
  sum1  = log( (2.*bA + alP2 * log(s/sMinAX)) 
    / (2.*bA + alP2 * log(s/sMaxAX)) ) / alP2; 
  sum2  = CRES * sRMlogAX / (2.*bA + alP2 * log(s/sRMavgAX) + BcorrAX) ;  
  sigAX = CONVERTSD * X[iProc] * BETA0[iHadA] * max( 0., sum1 + sum2);
 
  // Order single diffractive correctly.
  if (swapped) {
    swap( bB, bA);
    swap( sigXB, sigAX);
    swap( mMinXBsave, mMinAXsave);
    swap( mResXBsave, mResAXsave);
   }

  // Double diffractive scattering A + B -> X1 + X2 cross section.
  double y0min = log( s * SPROTON / (sMinXB * sMinAX) ) ;
  double sLog  = log(s);  
  double Delta0 = CDD[iDD][0] + CDD[iDD][1] / sLog 
    + CDD[iDD][2] / pow2(sLog);
  sum1 = (y0min * (log( max( 1e-10, y0min/Delta0) ) - 1.) + Delta0)/ alP2;
  if (y0min < 0.) sum1 = 0.;
  double sMaxXX = s * ( CDD[iDD][3] + CDD[iDD][4] / sLog
    + CDD[iDD][5] / pow2(sLog) );
  double sLogUp = log( max( 1.1, s * s0 / (sMinXB * sRMavgAX) ));
  double sLogDn = log( max( 1.1, s * s0 / (sMaxXX * sRMavgAX) ));
  sum2   = CRES * log( sLogUp / sLogDn ) * sRMlogAX / alP2;
  sLogUp = log( max( 1.1, s * s0 / (sMinAX * sRMavgXB) ));
  sLogDn = log( max( 1.1, s * s0 / (sMaxXX * sRMavgXB) ));
  sum3   = CRES * log(sLogUp / sLogDn) * sRMlogXB / alP2;
  double BcorrXX =  CDD[iDD][6] + CDD[iDD][7] / eCM + CDD[iDD][8] / s;
  sum4   = pow2(CRES) * sRMlogAX * sRMlogXB 
    / max( 0.1, alP2 * log( s * s0 / (sRMavgAX * sRMavgXB) ) + BcorrXX);
  sigXX  = CONVERTDD * X[iProc] * max( 0., sum1 + sum2 + sum3 + sum4);

  // Option with user-requested damping of diffractive cross sections.
  if (doDampen) {
    sigXB = sigXB * maxXBOwn / (sigXB + maxXBOwn);
    sigAX = sigAX * maxAXOwn / (sigAX + maxAXOwn);
    sigXX = sigXX * maxXXOwn / (sigXX + maxXXOwn);
  }
  
  // Calculate cross sections in MBR model.
  if (PomFlux == 5) calcMBRxsecs(idA, idB, eCM);

  // Option with user-set values for total and partial cross sections.
  // (Is not done earlier since want diffractive slopes anyway.)
  double sigNDOwn = sigTotOwn - sigElOwn - sigXBOwn - sigAXOwn - sigXXOwn
                  - sigAXBOwn; 
  double sigElMax = sigEl;
  if (setTotal && sigNDOwn > 0.) {
    sigTot   = sigTotOwn;
    sigEl    = sigElOwn;
    sigXB    = sigXBOwn;
    sigAX    = sigAXOwn;
    sigXX    = sigXXOwn;
    sigAXB   = sigAXBOwn;
    sigElMax = sigEl;

    // Sub-option to set elastic parameters, including Coulomb contribution.
    if (setElastic) {
      bEl      = bSlope;
      sigEl    = CONVERTEL * pow2(sigTot) * (1. + rho*rho) / bSlope;
      sigElMax = 2. * (sigEl * exp(-bSlope * tAbsMin)
               + alphaEM0 * alphaEM0 / (4. * CONVERTEL * tAbsMin) );
    }
  }
  
  // Inelastic nondiffractive by unitarity.
  sigND = sigTot - sigEl - sigXB - sigAX - sigXX - sigAXB; 
  if (sigND < 0.) infoPtr->errorMsg("Error in SigmaTotal::init: "
    "sigND < 0"); 
  else if (sigND < 0.4 * sigTot) infoPtr->errorMsg("Warning in "
    "SigmaTotal::init: sigND suspiciously low"); 

  // Upper estimate of elastic, including Coulomb term, where appropriate.
  sigEl = sigElMax;

  // Done.
  isCalc = true;
  return true;

}

//==========================================================================

// Calculate parameters in the MBR model.

bool SigmaTotal::calcMBRxsecs( int idA, int idB, double eCM) {

  // Local variables.
  double sigtot, sigel, sigsd, sigdd, sigdpe;
  
  // MBR parameters locally.
  double eps       = MBReps;
  double alph      = MBRalpha;  
  double beta0gev  = MBRbeta0;
  double beta0mb   = beta0gev * sqrt(HBARC2);
  double sigma0mb  = MBRsigma0;  
  double sigma0gev = sigma0mb/HBARC2;  
  double a1        = FFA1;
  double a2        = FFA2;
  double b1        = FFB1;
  double b2        = FFB2;
  
  // Calculate total and elastic cross sections.
  double ratio;
  if (eCM <= 1800.0) {
    double sign = (idA * idB > 0);
    sigtot = 16.79 * pow(s, 0.104) + 60.81 * pow(s, -0.32) 
           - sign * 31.68 * pow(s, -0.54);
    ratio  = 0.100 * pow(s, 0.06) + 0.421 * pow(s, -0.52) 
           + sign * 0.160 * pow(s, -0.6);    
  } else {    
    double sigCDF = 80.03;
    double sCDF   = pow2(1800.);  
    double sF     = pow2(22.);
    sigtot = sigCDF + ( pow2( log(s / sF)) - pow2( log(sCDF / sF)) )
            * M_PI / (3.7 / HBARC2);
    ratio  = 0.066 + 0.0119 * log(s);
  }   
  sigel=sigtot*ratio;
  
  // Integrate SD, DD and DPE(CD) cross sections. 
  // Each cross section is obtained from the ratio of two integrals: 
  // the Regge cross section and the renormalized flux.  
  double cflux, csig, c1, step, f;
  double dymin0 = 0.;
  
  // Calculate SD cross section.
  double dymaxSD = log(s / m2min);
  cflux          = pow2(beta0gev) / (16. * M_PI);
  csig           = cflux * sigma0mb;  

  // SD flux.
  c1             = cflux;
  double fluxsd  = 0.;
  step           = (dymaxSD - dyminSDflux) / NINTEG;
  for (int i = 0; i < NINTEG; ++i) {
    double dy    = dyminSDflux + (i + 0.5) * step;
    f            = exp(2. * eps * dy) * ( (a1 / (b1 + 2. * alph * dy))
                 + (a2 / (b2 + 2. * alph * dy)) );    
    f           *= 0.5 * (1. + erf( (dy - dyminSD) / dyminSigSD));
    fluxsd       = fluxsd + step * c1 * f;
  }  
  if (fluxsd < 1.) fluxsd = 1.;

  // Regge cross section.
  c1             = csig * pow(s, eps);
  sigsd          = 0.;
  sdpmax         = 0.;
  step           = (dymaxSD - dymin0) / NINTEG;  
  for (int i = 0; i < NINTEG; ++i) {
    double dy    = dymin0 + (i + 0.5) * step;
    f            = exp(eps * dy) * ( (a1 / (b1 + 2. * alph * dy)) 
                 + (a2 / (b2 + 2. * alph * dy)) );
    f           *= 0.5 * (1. + erf( (dy - dyminSD) / dyminSigSD));
    if (f > sdpmax) sdpmax = f;
    sigsd        = sigsd + step * c1 * f;
  }  
  sdpmax        *= 1.01;
  sigsd         /= fluxsd;

  // Calculate DD cross section.
  // Note: dymaxDD = ln(s * s0 /mMin^4) with s0 = 1 GeV^2. 
  double dymaxDD = log(s / pow2(m2min));  
  cflux          = sigma0gev / (16. * M_PI);
  csig           = cflux * sigma0mb;

  // DD flux.
  c1             = cflux / (2. * alph);
  double fluxdd  = 0.;
  step           = (dymaxDD - dyminDDflux) / NINTEG;
  for (int i = 0; i < NINTEG; ++i) {    
    double dy    = dyminDDflux + (i + 0.5) * step;
    f            = (dymaxDD - dy) * exp(2. * eps * dy) 
                 * ( exp(-2. * alph * dy * exp(-dy))
		 - exp(-2. * alph * dy * exp(dy)) ) / dy;
    f           *= 0.5 * (1. + erf( (dy - dyminDD) / dyminSigDD));
    fluxdd       = fluxdd + step * c1 * f;
  }
  if (fluxdd < 1.) fluxdd = 1.;
  
  // Regge cross section.
  c1             = csig * pow(s, eps) / (2. * alph);  
  ddpmax         = 0.;
  sigdd          = 0.;
  step           = (dymaxDD - dymin0) / NINTEG;
  for (int i = 0; i < NINTEG; ++i) {
    double dy    = dymin0 + (i + 0.5) * step;
    f            = (dymaxDD - dy) * exp(eps * dy) 
                 * ( exp(-2. * alph * dy * exp(-dy))
		 - exp(-2. * alph * dy * exp(dy)) ) / dy;
    f           *= 0.5 * (1. + erf( (dy - dyminDD) / dyminSigDD));
    if (f > ddpmax) ddpmax = f;
    sigdd        = sigdd + step * c1 * f;
  }
  ddpmax        *= 1.01;
  sigdd         /= fluxdd;
  
  // Calculate DPE (CD) cross section.
  double dymaxCD = log(s / m2min);
  cflux          = pow4(beta0gev) / pow2(16. * M_PI);
  csig           = cflux * pow2(sigma0mb / beta0mb);
  double dy1, dy2, f1, f2, step2;
    
  // DPE flux.
  c1             = cflux;
  double fluxdpe = 0.;
  step           = (dymaxCD - dyminCDflux) / NINTEG;
  for (int i = 0; i < NINTEG; ++i) {
    double dy    = dyminCDflux + (i + 0.5) * step;
    f            = 0.;
    step2        = (dy - dyminCDflux) / NINTEG2;
    for (int j = 0; j < NINTEG2; ++j) {
      double yc  = -0.5 * (dy - dyminCDflux) + (j + 0.5) * step2;
      dy1        = 0.5 * dy - yc;
      dy2        = 0.5 * dy + yc;
      f1         = exp(2. * eps * dy1) * ( (a1 / (b1 + 2. * alph * dy1))
                 + (a2 / (b2 + 2. * alph * dy1)) );
      f2         = exp(2. * eps * dy2) * ( (a1 / (b1 + 2. * alph * dy2))
                 + (a2 / (b2 + 2. * alph * dy2)) );
      f1        *= 0.5 * (1. + erf( (dy1 - 0.5 * dyminCD)
                 / (dyminSigCD / sqrt(2))) );
      f2        *= 0.5 * (1. + erf( (dy2 - 0.5 *dyminCD)
                 / (dyminSigCD / sqrt(2))) );
      f         += f1 * f2 * step2;      
    }
    fluxdpe     += step * c1 * f;    
  }
  if (fluxdpe < 1.) fluxdpe = 1.;
  
  // Regge cross section.  
  c1             = csig * pow(s, eps);
  sigdpe         = 0.;
  dpepmax        = 0;
  step           = (dymaxCD - dymin0) / NINTEG;
  for (int i = 0; i < NINTEG; ++i) {
    double dy    = dymin0 + (i + 0.5) * step;    
    f            = 0.;
    step2        = (dy - dymin0) / NINTEG2;
    for (int j = 0; j < NINTEG2; ++j) {
      double yc  = -0.5 * (dy - dymin0) + (j + 0.5) * step2;      
      dy1        = 0.5 * dy - yc;
      dy2        = 0.5 * dy + yc;
      f1         = exp(eps * dy1) * ( (a1 / (b1 + 2. * alph * dy1))
                 + (a2 / (b2 + 2. * alph * dy1)) );
      f2         = exp(eps * dy2) * ( (a1 / (b1 + 2. * alph * dy2))
                 + (a2 / (b2 + 2. * alph * dy2)) );
      f1        *= 0.5 * (1. + erf( (dy1 - 0.5 * dyminCD) 
                 / (dyminSigCD / sqrt(2))) );
      f2        *= 0.5 * (1. + erf( (dy2 - 0.5 * dyminCD)
                 /(dyminSigCD / sqrt(2))) );
      f         += f1 * f2 * step2;      
    }
    sigdpe      += step * c1 * f;
    if ( f > dpepmax) dpepmax = f;
  }
  dpepmax       *= 1.01;
  sigdpe        /= fluxdpe;
  
  // Diffraction done. Now calculate total inelastic cross section.
  sigND  = sigtot - (2. * sigsd + sigdd + sigel + sigdpe);
  sigTot = sigtot;
  sigEl  = sigel;
  sigAX  = sigsd;
  sigXB  = sigsd;
  sigXX  = sigdd;
  sigAXB = sigdpe;

  return true;
}

//==========================================================================

} // end namespace Pythia8