File: StandardModel.cc

package info (click to toggle)
pythia8 8.1.65-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 22,660 kB
  • sloc: cpp: 59,593; xml: 30,509; php: 6,649; sh: 796; makefile: 353; ansic: 33
file content (488 lines) | stat: -rw-r--r-- 17,306 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
// StandardModel.cc is a part of the PYTHIA event generator.
// Copyright (C) 2012 Torbjorn Sjostrand.
// PYTHIA is licenced under the GNU GPL version 2, see COPYING for details.
// Please respect the MCnet Guidelines, see GUIDELINES for details.

// Function definitions (not found in the header) for the AlphaStrong class.

#include "StandardModel.h"

namespace Pythia8 {

//==========================================================================

// The AlphaStrong class.

//--------------------------------------------------------------------------

// Constants: could be changed here if desired, but normally should not.
// These are of technical nature, as described for each.

// Number of iterations to determine Lambda from given alpha_s.
const int AlphaStrong::NITER           = 10;

// Masses: m_c, m_b, m_Z. Used for flavour thresholds and normalization scale.
const double AlphaStrong::MC           = 1.5;
const double AlphaStrong::MB           = 4.8;
const double AlphaStrong::MZ           = 91.188;

// Always evaluate running alpha_s above Lambda3 to avoid disaster.
// Safety margin picked to freeze roughly for alpha_s = 10.
const double AlphaStrong::SAFETYMARGIN1 = 1.07;
const double AlphaStrong::SAFETYMARGIN2 = 1.33;

//--------------------------------------------------------------------------

// Initialize alpha_strong calculation by finding Lambda values etc.

void AlphaStrong::init( double valueIn, int orderIn) {

  // Order of alpha_s evaluation.
  valueRef = valueIn;
  order    = max( 0, min( 2, orderIn ) );

  // Fix alpha_s.
  if (order == 0) {
    Lambda3Save = Lambda4Save = Lambda5Save = scale2Min = 0.;

  // First order alpha_s: match at flavour thresholds.
  } else if (order == 1) {
    Lambda5Save = MZ * exp( -6. * M_PI / (23. * valueRef) );
    Lambda4Save = Lambda5Save * pow(MB/Lambda5Save, 2./25.); 
    Lambda3Save = Lambda4Save * pow(MC/Lambda4Save, 2./27.); 
    scale2Min   = pow2(SAFETYMARGIN1 * Lambda3Save);

  // Second order alpha_s: iterative match at flavour thresholds.
  } else {
    double b15 = 348. / 529.;
    double b14 = 462. / 625.;
    double b13 = 64. / 81.;    
    double b25 = 224687. / 242208.;      
    double b24 = 548575. / 426888.;
    double b23 = 938709. / 663552.;
    double logScale, loglogScale, correction, valueIter;

    // Find Lambda_5 at m_Z.
    Lambda5Save = MZ * exp( -6. * M_PI / (23. * valueRef) );
    for (int iter = 0; iter < NITER; ++iter) {
      logScale    = 2. * log(MZ/Lambda5Save);
      loglogScale = log(logScale);
      correction  = 1. - b15 * loglogScale / logScale 
        + pow2(b15 / logScale) * (pow2(loglogScale - 0.5) + b25 - 1.25);
      valueIter   = valueRef / correction; 
      Lambda5Save = MZ * exp( -6. * M_PI / (23. * valueIter) );
    }

    // Find Lambda_4 at m_b.
    double logScaleB    = 2. * log(MB/Lambda5Save);
    double loglogScaleB = log(logScaleB);
    double valueB       = 12. * M_PI / (23. * logScaleB) 
      * (1. - b15 * loglogScaleB / logScaleB
        + pow2(b15 / logScaleB) * (pow2(loglogScaleB - 0.5) + b25- 1.25) ); 
    Lambda4Save         = Lambda5Save;
    for (int iter = 0; iter < NITER; ++iter) {
      logScale    = 2. * log(MB/Lambda4Save);
      loglogScale = log(logScale);
      correction  = 1. - b14 * loglogScale / logScale 
        + pow2(b14 / logScale) * (pow2(loglogScale - 0.5) + b24 - 1.25);
      valueIter   = valueB / correction; 
      Lambda4Save = MB * exp( -6. * M_PI / (25. * valueIter) );
    }

    // Find Lambda_3 at m_c.
    double logScaleC    = 2. * log(MC/Lambda4Save);
    double loglogScaleC = log(logScaleC);
    double valueC       = 12. * M_PI / (25. * logScaleC) 
      * (1. - b14 * loglogScaleC / logScaleC
        + pow2(b14 / logScaleC) * (pow2(loglogScaleC - 0.5) + b24 - 1.25) ); 
    Lambda3Save = Lambda4Save;
    for (int iter = 0; iter < NITER; ++iter) {
      logScale    = 2. * log(MC/Lambda3Save);
      loglogScale = log(logScale);
      correction  = 1. - b13 * loglogScale / logScale 
        + pow2(b13 / logScale) * (pow2(loglogScale - 0.5) + b23 - 1.25);
      valueIter   = valueC / correction; 
      Lambda3Save = MC * exp( -6. * M_PI / (27. * valueIter) );
    }
    scale2Min     = pow2(SAFETYMARGIN2 * Lambda3Save);
  }

  // Save squares of mass and Lambda values as well.
  mc2          = pow2(MC);
  mb2          = pow2(MB);
  Lambda3Save2 = pow2(Lambda3Save);
  Lambda4Save2 = pow2(Lambda4Save);
  Lambda5Save2 = pow2(Lambda5Save);
  valueNow     = valueIn;
  scale2Now    = MZ * MZ;
  isInit = true;

}

//--------------------------------------------------------------------------

// Calculate alpha_s value    

double AlphaStrong::alphaS( double scale2) {

  // Check for initialization and ensure minimal scale2 value.
  if (!isInit) return 0.;
  if (scale2 < scale2Min) scale2 = scale2Min;

  // If equal to old scale then same answer.
  if (scale2 == scale2Now && (order < 2 || lastCallToFull)) return valueNow;
  scale2Now      = scale2;
  lastCallToFull = true;

  // Fix alpha_s.
  if (order == 0) {
    valueNow = valueRef;        
  
  // First order alpha_s: differs by mass region.  
  } else if (order == 1) {
    if (scale2 > mb2) 
         valueNow = 12. * M_PI / (23. * log(scale2/Lambda5Save2));
    else if (scale2 > mc2) 
         valueNow = 12. * M_PI / (25. * log(scale2/Lambda4Save2));
    else valueNow = 12. * M_PI / (27. * log(scale2/Lambda3Save2));
  
  // Second order alpha_s: differs by mass region.  
  } else {
    double Lambda2, b0, b1, b2;
    if (scale2 > mb2) {
      Lambda2 = Lambda5Save2;
      b0      = 23.;
      b1      = 348. / 529.; 
      b2      = 224687. / 242208.;      
    } else if (scale2 > mc2) {     
      Lambda2 = Lambda4Save2;
      b0      = 25.;
      b1      = 462. / 625.;
      b2      = 548575. / 426888.;
    } else {       
      Lambda2 = Lambda3Save2;
      b0      = 27.;
      b1      = 64. / 81.;
      b2      = 938709. / 663552.;
    }
    double logScale    = log(scale2/Lambda2);
    double loglogScale = log(logScale);
    valueNow = 12. * M_PI / (b0 * logScale) 
      * ( 1. - b1 * loglogScale / logScale 
        + pow2(b1 / logScale) * (pow2(loglogScale - 0.5) + b2 - 1.25) ); 
  }

  // Done.
  return valueNow;

} 

//--------------------------------------------------------------------------

// Calculate alpha_s value, but only use up to first-order piece.
// (To be combined with alphaS2OrdCorr.)

double  AlphaStrong::alphaS1Ord( double scale2) {

  // Check for initialization and ensure minimal scale2 value.
  if (!isInit) return 0.;
  if (scale2 < scale2Min) scale2 = scale2Min;

  // If equal to old scale then same answer.
  if (scale2 == scale2Now && (order < 2 || !lastCallToFull)) return valueNow;
  scale2Now      = scale2;
  lastCallToFull = false;

  // Fix alpha_S.
  if (order == 0) {
    valueNow = valueRef;        
  
  // First/second order alpha_s: differs by mass region.  
  } else {
    if (scale2 > mb2) 
         valueNow = 12. * M_PI / (23. * log(scale2/Lambda5Save2));
    else if (scale2 > mc2) 
         valueNow = 12. * M_PI / (25. * log(scale2/Lambda4Save2));
    else valueNow = 12. * M_PI / (27. * log(scale2/Lambda3Save2));
  }

  // Done.
  return valueNow;
} 

//--------------------------------------------------------------------------

// Calculates the second-order extra factor in alpha_s.
// (To be combined with alphaS1Ord.)

double AlphaStrong::alphaS2OrdCorr( double scale2) {

  // Check for initialization and ensure minimal scale2 value.
  if (!isInit) return 1.;
  if (scale2 < scale2Min) scale2 = scale2Min;

  // Only meaningful for second order calculations.
  if (order < 2) return 1.; 
  
  // Second order correction term: differs by mass region.  
  double Lambda2, b1, b2;
  if (scale2 > mb2) {
    Lambda2 = Lambda5Save2;
    b1      = 348. / 529.;       
    b2      = 224687. / 242208.;      
  } else if (scale2 > mc2) {     
    Lambda2 = Lambda4Save2;
    b1      = 462. / 625.;
    b2      = 548575. / 426888.;
  } else {       
    Lambda2 = Lambda3Save2;
    b1      = 64. / 81.;
    b2      = 938709. / 663552.;
  }
  double logScale    = log(scale2/Lambda2);
  double loglogScale = log(logScale);
  return ( 1. - b1 * loglogScale / logScale 
    + pow2(b1 / logScale) * (pow2(loglogScale - 0.5) + b2 - 1.25) ); 

} 

//==========================================================================

// The AlphaEM class.

//--------------------------------------------------------------------------

// Definitions of static variables.

// Z0 mass. Used for normalization scale.
const double AlphaEM::MZ         = 91.188;

// Effective thresholds for electron, muon, light quarks, tau+c, b.
const double AlphaEM::Q2STEP[5]  = {0.26e-6, 0.011, 0.25, 3.5, 90.};

// Running coefficients are sum charge2 / 3 pi in pure QED, here slightly
// enhanced for quarks to approximately account for QCD corrections.
const double AlphaEM::BRUNDEF[5] = {0.1061, 0.2122, 0.460, 0.700, 0.725};

//--------------------------------------------------------------------------

// Initialize alpha_EM calculation.

void AlphaEM::init(int orderIn, Settings* settingsPtr) {

  // Order. Read in alpha_EM value at 0 and m_Z, and mass of Z.
  order     = orderIn;
  alpEM0    = settingsPtr->parm("StandardModel:alphaEM0");
  alpEMmZ   = settingsPtr->parm("StandardModel:alphaEMmZ");
  mZ2       = MZ * MZ;

  // AlphaEM values at matching scales and matching b value.
  if (order <= 0) return;
  for (int i = 0; i < 5; ++i) bRun[i] = BRUNDEF[i];

  // Step down from mZ to tau/charm threshold. 
  alpEMstep[4] = alpEMmZ / ( 1. + alpEMmZ * bRun[4] 
    * log(mZ2 / Q2STEP[4]) );
  alpEMstep[3] = alpEMstep[4] / ( 1. - alpEMstep[4] * bRun[3] 
    * log(Q2STEP[3] / Q2STEP[4]) );

  // Step up from me to light-quark threshold.
  alpEMstep[0] = alpEM0;   
  alpEMstep[1] = alpEMstep[0] / ( 1. - alpEMstep[0] * bRun[0] 
    * log(Q2STEP[1] / Q2STEP[0]) );
  alpEMstep[2] = alpEMstep[1] / ( 1. - alpEMstep[1] * bRun[1] 
    * log(Q2STEP[2] / Q2STEP[1]) );

  // Fit b in range between light-quark and tau/charm to join smoothly.
  bRun[2] = (1./alpEMstep[3] - 1./alpEMstep[2])
    / log(Q2STEP[2] / Q2STEP[3]);

}

//--------------------------------------------------------------------------

// Calculate alpha_EM value    

double AlphaEM::alphaEM( double scale2) {

  // Fix alphaEM; for order = -1 fixed at m_Z.
  if (order == 0)  return alpEM0;
  if (order <  0)  return alpEMmZ;

  // Running alphaEM.
  for (int i = 4; i >= 0; --i) if (scale2 > Q2STEP[i])
    return alpEMstep[i] / (1. - bRun[i] * alpEMstep[i] 
      * log(scale2 / Q2STEP[i]) );
  return alpEM0;

}

//==========================================================================

// The CoupSM class.

//--------------------------------------------------------------------------

// Definitions of static variables: charges and axial couplings.
const double CoupSM::efSave[20] = { 0., -1./3., 2./3., -1./3., 2./3., -1./3., 
  2./3., -1./3., 2./3., 0., 0., -1., 0., -1., 0., -1., 0., -1., 0., 0.};
const double CoupSM::afSave[20] = { 0., -1., 1., -1., 1., -1., 1., -1., 1., 
  0., 0., -1., 1., -1., 1., -1., 1., -1., 1., 0.};

//--------------------------------------------------------------------------

// Initialize electroweak mixing angle and couplings, and CKM matrix elements.

void CoupSM::init(Settings& settings, Rndm* rndmPtrIn) { 

  // Store input pointer;
  rndmPtr = rndmPtrIn;

  // Initialize the local AlphaStrong instance.
  double alphaSvalue  = settings.parm("SigmaProcess:alphaSvalue");
  int    alphaSorder  = settings.mode("SigmaProcess:alphaSorder");
  alphaSlocal.init( alphaSvalue, alphaSorder); 

  // Initialize the local AlphaEM instance.
  int order = settings.mode("SigmaProcess:alphaEMorder");
  alphaEMlocal.init( order, &settings);

  // Read in electroweak mixing angle and the Fermi constant.
  s2tW    = settings.parm("StandardModel:sin2thetaW");
  c2tW    = 1. - s2tW;
  s2tWbar = settings.parm("StandardModel:sin2thetaWbar");
  GFermi  = settings.parm("StandardModel:GF");

  // Initialize electroweak couplings.
  for (int i = 0; i < 20; ++i) {  
    vfSave[i]  = afSave[i] - 4. * s2tWbar * efSave[i];
    lfSave[i]  = afSave[i] - 2. * s2tWbar * efSave[i];
    rfSave[i]  =           - 2. * s2tWbar * efSave[i];
    ef2Save[i] = pow2(efSave[i]);
    vf2Save[i] = pow2(vfSave[i]);
    af2Save[i] = pow2(afSave[i]);
    efvfSave[i] = efSave[i] * vfSave[i];
    vf2af2Save[i] = vf2Save[i] + af2Save[i];
  }

  // Read in CKM matrix element values and store them.
  VCKMsave[1][1] = settings.parm("StandardModel:Vud");
  VCKMsave[1][2] = settings.parm("StandardModel:Vus");
  VCKMsave[1][3] = settings.parm("StandardModel:Vub");
  VCKMsave[2][1] = settings.parm("StandardModel:Vcd");
  VCKMsave[2][2] = settings.parm("StandardModel:Vcs");
  VCKMsave[2][3] = settings.parm("StandardModel:Vcb");
  VCKMsave[3][1] = settings.parm("StandardModel:Vtd");
  VCKMsave[3][2] = settings.parm("StandardModel:Vts");
  VCKMsave[3][3] = settings.parm("StandardModel:Vtb");

  // Also allow for the potential existence of a fourth generation.
  VCKMsave[1][4] = settings.parm("FourthGeneration:VubPrime");
  VCKMsave[2][4] = settings.parm("FourthGeneration:VcbPrime");
  VCKMsave[3][4] = settings.parm("FourthGeneration:VtbPrime");
  VCKMsave[4][1] = settings.parm("FourthGeneration:VtPrimed");
  VCKMsave[4][2] = settings.parm("FourthGeneration:VtPrimes");
  VCKMsave[4][3] = settings.parm("FourthGeneration:VtPrimeb");
  VCKMsave[4][4] = settings.parm("FourthGeneration:VtPrimebPrime");

  // Calculate squares of matrix elements.
  for(int i = 1; i < 5; ++i) for(int j = 1; j < 5; ++j) 
    V2CKMsave[i][j] = pow2(VCKMsave[i][j]); 
  
  // Sum VCKM^2_out sum for given incoming flavour, excluding top as partner.
  V2CKMout[1] = V2CKMsave[1][1] + V2CKMsave[2][1];
  V2CKMout[2] = V2CKMsave[1][1] + V2CKMsave[1][2] + V2CKMsave[1][3];
  V2CKMout[3] = V2CKMsave[1][2] + V2CKMsave[2][2];
  V2CKMout[4] = V2CKMsave[2][1] + V2CKMsave[2][2] + V2CKMsave[2][3];
  V2CKMout[5] = V2CKMsave[1][3] + V2CKMsave[2][3];
  V2CKMout[6] = V2CKMsave[3][1] + V2CKMsave[3][2] + V2CKMsave[3][3];
  V2CKMout[7] = V2CKMsave[1][4] + V2CKMsave[2][4];
  V2CKMout[8] = V2CKMsave[4][1] + V2CKMsave[4][2] + V2CKMsave[4][3];
  for (int i = 11; i <= 18; ++i) V2CKMout[i] = 1.;
 
}

//--------------------------------------------------------------------------

// Return CKM value for incoming flavours (sign irrelevant).

double CoupSM::VCKMid(int id1, int id2) {

  // Use absolute sign (want to cover both f -> f' W and f fbar' -> W).
  int id1Abs = abs(id1);
  int id2Abs = abs(id2);
  if (id1Abs == 0 || id2Abs == 0 || (id1Abs + id2Abs)%2 != 1) return 0.;

  // Ensure proper order before reading out from VCKMsave or lepton match.
  if (id1Abs%2 == 1) swap(id1Abs, id2Abs);
  if (id1Abs <= 8 && id2Abs <= 8) return VCKMsave[id1Abs/2][(id2Abs + 1)/2];
  if ( (id1Abs == 12 || id1Abs == 14 || id1Abs == 16 || id1Abs == 18) 
    && id2Abs == id1Abs - 1 ) return 1.;
  
  // No more valid cases.
  return 0.;

}

//--------------------------------------------------------------------------

// Return squared CKM value for incoming flavours (sign irrelevant).

double CoupSM::V2CKMid(int id1, int id2) {

  // Use absolute sign (want to cover both f -> f' W and f fbar' -> W).
  int id1Abs = abs(id1);
  int id2Abs = abs(id2);
  if (id1Abs == 0 || id2Abs == 0 || (id1Abs + id2Abs)%2 != 1) return 0.;

  // Ensure proper order before reading out from V2CKMsave or lepton match.
  if (id1Abs%2 == 1) swap(id1Abs, id2Abs);
  if (id1Abs <= 8 && id2Abs <= 8) return V2CKMsave[id1Abs/2][(id2Abs + 1)/2];
  if ( (id1Abs == 12 || id1Abs == 14 || id1Abs == 16 || id1Abs == 18) 
    && id2Abs == id1Abs - 1 ) return 1.;
  
  // No more valid cases.
  return 0.;

}

//--------------------------------------------------------------------------

// Pick an outgoing flavour for given incoming one, given CKM mixing.

int CoupSM::V2CKMpick(int id) {

  // Initial values.
  int idIn = abs(id);
  int idOut = 0;
  
  // Quarks: need to make random choice.
  if (idIn >= 1 && idIn <= 8) {
    double V2CKMrndm = rndmPtr->flat() * V2CKMout[idIn]; 
    if (idIn == 1) idOut = (V2CKMrndm < V2CKMsave[1][1]) ? 2 : 4;
    else if (idIn == 2) idOut = (V2CKMrndm < V2CKMsave[1][1]) ? 1 
      : ( (V2CKMrndm < V2CKMsave[1][1] + V2CKMsave[1][2]) ? 3 : 5 );
    else if (idIn == 3) idOut = (V2CKMrndm < V2CKMsave[1][2]) ? 2 : 4;
    else if (idIn == 4) idOut = (V2CKMrndm < V2CKMsave[2][1]) ? 1 
      : ( (V2CKMrndm < V2CKMsave[2][1] + V2CKMsave[2][2]) ? 3 : 5 );
    else if (idIn == 5) idOut = (V2CKMrndm < V2CKMsave[1][3]) ? 2 : 4;
    else if (idIn == 6) idOut = (V2CKMrndm < V2CKMsave[3][1]) ? 1 
      : ( (V2CKMrndm < V2CKMsave[3][1] + V2CKMsave[3][2]) ? 3 : 5 );
    else if (idIn == 7) idOut = (V2CKMrndm < V2CKMsave[1][4]) ? 2 : 4;
    else if (idIn == 8) idOut = (V2CKMrndm < V2CKMsave[4][1]) ? 1 
      : ( (V2CKMrndm < V2CKMsave[4][1] + V2CKMsave[4][2]) ? 3 : 5 );
  
  // Leptons: unambiguous. 
  } else if (idIn >= 11 && idIn <= 18) {
    if (idIn%2 == 1) idOut = idIn + 1;
    else idOut             = idIn - 1;
  } 

  // Done. Return with sign.
  return ( (id > 0) ? idOut : -idOut );

}

//==========================================================================

} // end namespace Pythia8