File: aafigure.py

package info (click to toggle)
python-aafigure 0.6-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 428 kB
  • sloc: python: 1,942; makefile: 112
file content (1274 lines) | stat: -rw-r--r-- 47,282 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
#!/usr/bin/env python
#
# This file is part of aafigure. https://github.com/aafigure/aafigure
# (C) 2006-2011 Chris Liechti <cliechti@gmx.net> and the aafigure-team
#
# SPDX-License-Identifier:    BSD-3-Clause
"""\
ASCII art to image converter.

This is the main module that contains the parser.

See svg.py and aa.py for output modules, that can render the parsed structure.
"""
# import codecs
from .error import UnsupportedFormatError
from .shapes import Line, Point, Circle, Label, Arc, Rectangle, group  # point
from unicodedata import east_asian_width
import sys


try:
    basestring
except NameError:
    basestring = str

NOMINAL_SIZE = 2

CLASS_LINE = 'line'
CLASS_STRING = 'str'
CLASS_RECTANGLE = 'rect'
CLASS_JOIN = 'join'
CLASS_FIXED = 'fixed'

DEFAULT_OPTIONS = dict(
    background='#ffffff',
    foreground='#000000',
    line_width=2.0,
    scale=1.0,
    aspect=1.0,
    format='svg',
    debug=False,
    textual=False,
    textual_strict=False,
    proportional=False,
    encoding='utf-8',
    widechars='F,W',
    rounded=False,
)

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - -


class AsciiArtImage:
    """\
    This class holds a ASCII art figure and has methods to parse it.
    The resulting list of shapes is also stored here.

    The image is parsed in 2 steps:

    1. horizontal string detection.
    2. generic shape detection.

    Each character that is used in a shape or string is tagged. So that
    further searches don't include it again (e.g. text in a string touching
    a fill), respectively can use it correctly (e.g. join characters when
    two or more lines hit).
    """

    QUOTATION_CHARACTERS = list('"\'`')

    def __init__(self, text, options=None):
        """Take a ASCII art figure and store it, prepare for ``recognize``"""
        if options is None: options = {}
        self.aspect_ratio = float(options.get('aspect_ratio', 1))
        self.textual = options.get('textual', False)
        self.textual_strict = options.get('textual_strict', False)
        self.rounded = options.get('rounded', False)
        # XXX TODO tab expansion
        # detect size of input image, store as list of lines
        self.image = []
        max_x = 0
        y = 0
        # define character widths map
        charwidths = {}
        for key in ['F', 'H', 'W', 'Na', 'A', 'N']:
            if key in options.get('widechars', 'F,W').split(','):
                charwidths[key] = 2
            else:
                charwidths[key] = 1
        for line in text.splitlines():
            # extend length by 1 for each wide glyph
            line_len = sum(charwidths[east_asian_width(c)] for c in line)
            max_x = max(max_x, line_len)
            # pad a space for each wide glyph
            padded_line = ''.join(c + ' ' * (charwidths[east_asian_width(c)] - 1) for c in line)
            self.image.append(padded_line)
            y += 1
        self.width = max_x
        self.height = y
        # make sure it's rectangular (extend short lines to max width)
        for y, line in enumerate(self.image):
            if len(line) < max_x:
                self.image[y] = line + ' ' * (max_x - len(line))
        # initialize other data structures
        self.classification = [[None] * self.width for y in range(self.height)]
        self.shapes = []
        self.nominal_size = NOMINAL_SIZE

    def __str__(self):
        """Return the original image"""
        return '\n'.join([self.image[y] for y in range(self.height)])

    def get(self, x, y):
        """\
        Get character from image. Gives no error for access out of
        bounds, just returns a space. This simplifies the scanner
        functions.
        """
        if 0 <= x < self.width and 0 <= y < self.height:
            return self.image[y][x]
        else:
            return ' '

    def tag(self, coordinates, classification):
        """Tag coordinates as used, store classification"""
        for x, y in coordinates:
            self.classification[y][x] = classification

    def cls(self, x, y):
        """Get tag at coordinate"""
        try:
            return self.classification[y][x]
        except IndexError:
            return 'outside'

    # Coordinate conversion and shifting
    def left(self, x):
        return x * NOMINAL_SIZE * self.aspect_ratio

    def hcenter(self, x):
        return (x + 0.5) * NOMINAL_SIZE * self.aspect_ratio

    def right(self, x):
        return (x + 1)*NOMINAL_SIZE * self.aspect_ratio

    def top(self, y):
        return y * NOMINAL_SIZE

    def vcenter(self, y):
        return (y + 0.5) * NOMINAL_SIZE

    def bottom(self, y):
        return (y + 1) * NOMINAL_SIZE

    def recognize(self):
        """\
        Try to convert ASCII art to vector graphics. The result is stored in
        ``self.shapes``.
        """
        # XXX search for symbols
        #~ #search for long strings
        #~ for y in range(self.height):
            #~ for x in range(self.width):
                #~ character = self.image[y][x]
                #~ if self.classification[y][x] is None:
                    #~ if character.isalnum():
                        #~ self.shapes.extend(
                            #~ self._follow_horizontal_string(x, y)
                        #~ )
        # search for quoted texts
        for y in range(self.height):
            for x in range(self.width):
                #if not yet classified, check for a line
                character = self.image[y][x]
                if character in self.QUOTATION_CHARACTERS and self.classification[y][x] is None:
                    self.shapes.extend(
                        self._follow_horizontal_string(x, y, quoted=True))

        # search for standard shapes
        for y in range(self.height):
            for x in range(self.width):
                # if not yet classified, check for a line
                character = self.image[y][x]
                if self.classification[y][x] is None:
                    if character == '-':
                        self.shapes.extend(self._follow_horizontal_line(x, y))
                    elif character == '|':
                        self.shapes.extend(self._follow_vertical_line(x, y))
                    elif character == '_':
                        self.shapes.extend(self._follow_lower_horizontal_line(x, y))
                    elif character == '~':
                        self.shapes.extend(self._follow_upper_horizontal_line(x, y))
                    elif character == '=':
                        self.shapes.extend(self._follow_horizontal_line(x, y, thick=True))
                    elif character in '\\/':
                        self.shapes.extend(self._follow_rounded_edge(x, y))
                    elif character == '+':
                        self.shapes.extend(self._plus_joiner(x, y))
                    elif character in self.FIXED_CHARACTERS:
                        self.shapes.extend(self.get_fixed_character(character)(x, y))
                        self.tag([(x, y)], CLASS_FIXED)
                    elif not self.textual_strict and character in self.FILL_CHARACTERS:
                        if self.textual:
                            if self.get(x, y + 1) == character:
                                self.shapes.extend(self._follow_fill(character, x, y))
                        else:
                            if (self.get(x + 1, y) == character or self.get(x, y + 1) == character):
                                self.shapes.extend(self._follow_fill(character, x, y))

        # search for short strings too
        for y in range(self.height):
            for x in range(self.width):
                character = self.image[y][x]
                if self.classification[y][x] is None:
                    if character != ' ':
                        self.shapes.extend(self._follow_horizontal_string(x, y, accept_anything=True))

    # - - - - - - - - - helper function for some shapes - - - - - - - - -
    # Arrow drawing functions return the (new) starting point of the line and a
    # list of shapes that draw the arrow. The line itself is not included in
    # the list of shapes. The stating point is p1, possibly modified to match
    # the shape of the arrow head.
    #
    # Use complex numbers as 2D vectors as that means easy transformations like
    # scaling, rotation and translation

    # - - - - - - - - - arrows - - - - - - - - -
    def _standard_arrow(self, p1, p2):
        """\
        -->
        Return a possibly modified starting point and a list of shapes.
        """
        direction_vector = p1 - p2
        direction_vector /= abs(direction_vector)
        return p1, [
            Line(p1, p1-direction_vector * 1.5 + direction_vector * 0.5j),
            Line(p1, p1-direction_vector * 1.5 + direction_vector * -0.5j)
        ]

    def _reversed_arrow(self, p1, p2):
        """--<"""
        direction_vector = p1 - p2
        direction_vector /= abs(direction_vector)
        return p1-direction_vector * 2, [
            Line(p1-direction_vector * 2.0, p1+direction_vector * (-0.5 + 0.5j)),
            Line(p1-direction_vector * 2.0, p1+direction_vector * (-0.5 - 0.5j))
        ]

    def _circle_head(self, p1, p2, radius=0.5):
        """--o"""
        direction_vector = p1 - p2
        direction_vector /= abs(direction_vector)
        return p1-direction_vector, [Circle(p1 - direction_vector, radius)]

    def _large_circle_head(self, p1, p2):
        """--O"""
        return self._circle_head(p1, p2, radius=0.9)

    def _rectangular_head(self, p1, p2):
        """--#"""
        direction_vector = p1 - p2
        direction_vector /= abs(direction_vector)
        #~ return p1-direction_vector*1.414, [
            #~ Rectangle(p1-direction_vector-direction_vector*(0.707+0.707j),
                      #~ p1-direction_vector+direction_vector*(0.707+0.707j))
        #~ ]
        return p1-direction_vector * 1.707, [
            Line(p1 - direction_vector - direction_vector * (0.707 + 0.707j),
                 p1 - direction_vector - direction_vector * (0.707 - 0.707j)),
            Line(p1 - direction_vector + direction_vector * (0.707 + 0.707j),
                 p1 - direction_vector + direction_vector * (0.707 - 0.707j)),
            Line(p1 - direction_vector - direction_vector * (0.707 + 0.707j),
                 p1 - direction_vector + direction_vector * (0.707 - 0.707j)),
            Line(p1 - direction_vector - direction_vector * (0.707 - 0.707j),
                 p1 - direction_vector + direction_vector * (0.707 + 0.707j)),
        ]

    # the same character can mean a different thing, depending from where the
    # line is coming. this table maps line direction (dx,dy) and the arrow
    # character to a arrow drawing function
    ARROW_TYPES = [
        # chr  dx  dy  arrow type
        ('>',  1,  0, '_standard_arrow'),
        ('<', -1,  0, '_standard_arrow'),
        ('^',  0, -1, '_standard_arrow'),
        ('A',  0, -1, '_standard_arrow'),
        ('V',  0,  1, '_standard_arrow'),
        ('v',  0,  1, '_standard_arrow'),
        ('>', -1,  0, '_reversed_arrow'),
        ('<',  1,  0, '_reversed_arrow'),
        ('^',  0,  1, '_reversed_arrow'),
        ('V',  0, -1, '_reversed_arrow'),
        ('v',  0, -1, '_reversed_arrow'),
        ('o',  1,  0, '_circle_head'),
        ('o', -1,  0, '_circle_head'),
        ('o',  0, -1, '_circle_head'),
        ('o',  0,  1, '_circle_head'),
        ('O',  1,  0, '_large_circle_head'),
        ('O', -1,  0, '_large_circle_head'),
        ('O',  0, -1, '_large_circle_head'),
        ('O',  0,  1, '_large_circle_head'),
        ('#',  1,  0, '_rectangular_head'),
        ('#', -1,  0, '_rectangular_head'),
        ('#',  0, -1, '_rectangular_head'),
        ('#',  0,  1, '_rectangular_head'),
    ]

    ARROW_HEADS = list('<>AVv^oO#')

    def get_arrow(self, character, dx, dy):
        """Return arrow drawing function or None."""
        for head, ddx, ddy, function_name in self.ARROW_TYPES:
            if character == head and dx == ddx and dy == ddy:
                return getattr(self, function_name)

    # - - - - - - - - - fills - - - - - - - - -
    # Fill functions return a list of shapes. Each one if covering one cell
    # size.

    def _hatch_left(self, x, y):
        return self._n_hatch_diagonal(x, y, 1, True)

    def _hatch_right(self, x, y):
        return self._n_hatch_diagonal(x, y, 1, False)

    def _cross_hatch(self, x, y):
        return self._n_hatch_diagonal(x, y, 1, True) + \
               self._n_hatch_diagonal(x, y, 1, False)

    def _double_hatch_left(self, x, y):
        return self._n_hatch_diagonal(x, y, 2, True)

    def _double_hatch_right(self, x, y):
        return self._n_hatch_diagonal(x, y, 2, False)

    def _double_cross_hatch(self, x, y):
        return self._n_hatch_diagonal(x, y, 2, True) + \
               self._n_hatch_diagonal(x, y, 2, False)

    def _triple_hatch_left(self, x, y):
        return self._n_hatch_diagonal(x, y, 3, True)

    def _triple_hatch_right(self, x, y):
        return self._n_hatch_diagonal(x, y, 3, False)

    def _triple_cross_hatch(self, x, y):
        return self._n_hatch_diagonal(x, y, 3, True) + \
               self._n_hatch_diagonal(x, y, 3, False)

    def _n_hatch_diagonal(self, x, y, n, left=False):
        """Hatch pattern generator function."""
        d = 1/float(n)
        result = []
        if left:
            for i in range(n):
                result.append(Line(
                    Point(self.left(x), self.top(y + d * i)),
                    Point(self.right(x - d * i), self.bottom(y))
                ))
                if n:
                    result.append(Line(
                        Point(self.right(x - d * i), self.top(y)),
                        Point(self.right(x), self.top(y + d * i))
                    ))
        else:
            for i in range(n):
                result.append(Line(Point(self.left(x), self.top(y + d * i)), Point(self.left(x + d * i), self.top(y))))
                if n:
                    result.append(Line(Point(self.left(x + d * i), self.bottom(y)), Point(self.right(x), self.top(y + d * i))))
        return result

    def _hatch_v(self, x, y):
        return self._n_hatch_straight(x, y, 1, True)

    def _hatch_h(self, x, y):
        return self._n_hatch_straight(x, y, 1, False)

    def _hv_hatch(self, x, y):
        return self._n_hatch_straight(x, y, 1, True) + \
               self._n_hatch_straight(x, y, 1, False)

    def _double_hatch_v(self, x, y):
        return self._n_hatch_straight(x, y, 2, True)

    def _double_hatch_h(self, x, y):
        return self._n_hatch_straight(x, y, 2, False)

    def _double_hv_hatch(self, x, y):
        return self._n_hatch_straight(x, y, 2, True) + \
               self._n_hatch_straight(x, y, 2, False)

    def _triple_hatch_v(self, x, y):
        return self._n_hatch_straight(x, y, 3, True)

    def _triple_hatch_h(self, x, y):
        return self._n_hatch_straight(x, y, 3, False)

    def _triple_hv_hatch(self, x, y):
        return self._n_hatch_straight(x, y, 3, True) + \
               self._n_hatch_straight(x, y, 3, False)

    def _n_hatch_straight(self, x, y, n, vertical=False):
        """Hatch pattern generator function."""
        d = 1 / float(n)
        offset = 1.0 / (n + 1)
        result = []
        if vertical:
            for i in range(n):
                i = i + offset
                result.append(Line(
                    Point(self.left(x + d * i), self.top(y)),
                    Point(self.left(x + d * i), self.bottom(y))
                ))
                #~ if n:
                    #~ result.append(Line(Point(self.right(x-d*i), self.top(y)), Point(self.right(x), self.top(y+d*i))))
        else:
            for i in range(n):
                i = i + offset
                result.append(Line(
                    Point(self.left(x), self.top(y + d * i)),
                    Point(self.right(x), self.top(y + d * i))
                ))
                #~ if n:
                    #~ result.append(Line(Point(self.left(x+d*i), self.bottom(y)), Point(self.right(x), self.top(y+d*i))))
        return result

    def _fill_trail(self, x, y):
        return [
            Line(
                Point(self.left(x + 0.707), self.top(y)),
                Point(self.right(x), self.bottom(y - 0.707))
            ),
            Line(
                Point(self.left(x), self.top(y + 0.707)),
                Point(self.right(x - 0.707), self.bottom(y))
            )
        ]

    def _fill_foreground(self, x, y):
        return [
            Rectangle(
                Point(self.left(x), self.top(y)),
                Point(self.right(x), self.bottom(y))
            )
        ]

    def _fill_background(self, x, y):
        return []

    def _fill_small_circle(self, x, y):
        return [
            Circle(Point(self.left(x + 0.5), self.top(y + 0.5)), 0.2)
        ]

    def _fill_medium_circle(self, x, y):
        return [
            Circle(Point(self.left(x + 0.5), self.top(y + 0.5)), 0.4)
        ]

    def _fill_large_circle(self, x, y):
        return [
            Circle(Point(self.left(x + 0.5), self.top(y + 0.5)), 0.9)
        ]

    def _fill_qmark(self, x, y):
        return [
            Label(Point(self.left(x), self.bottom(y)), '?')
        ]

    def _fill_triangles(self, x, y):
        return [
            Line(Point(self.left(x + 0.5), self.top(y + 0.2)), Point(self.left(x + 0.75), self.top(y + 0.807))),
            Line(Point(self.left(x + 0.7), self.top(y + 0.807)), Point(self.left(x + 0.25), self.top(y + 0.807))),
            Line(Point(self.left(x + 0.25), self.top(y + 0.807)), Point(self.left(x + 0.5), self.top(y + 0.2))),
        ]

    FILL_TYPES = [
        ('A', '_hatch_left'),
        ('B', '_hatch_right'),
        ('C', '_cross_hatch'),
        ('D', '_double_hatch_left'),
        ('E', '_double_hatch_right'),
        ('F', '_double_cross_hatch'),
        ('G', '_triple_hatch_left'),
        ('H', '_triple_hatch_right'),
        ('I', '_triple_cross_hatch'),
        ('J', '_hatch_v'),
        ('K', '_hatch_h'),
        ('L', '_hv_hatch'),
        ('M', '_double_hatch_v'),
        ('N', '_double_hatch_h'),
        ('O', '_double_hv_hatch'),
        ('P', '_triple_hatch_v'),
        ('Q', '_triple_hatch_h'),
        ('R', '_triple_hv_hatch'),
        ('S', '_fill_qmark'),
        ('T', '_fill_trail'),
        ('U', '_fill_small_circle'),
        ('V', '_fill_medium_circle'),
        ('W', '_fill_large_circle'),
        ('X', '_fill_foreground'),
        ('Y', '_fill_triangles'),
        ('Z', '_fill_background'),
    ]

    FILL_CHARACTERS = ''.join([t+t.lower() for (t, f) in FILL_TYPES])

    def get_fill(self, character):
        """Return fill function based on character."""
        for head, function_name in self.FILL_TYPES:
            if character == head:
                return getattr(self, function_name)
        raise ValueError('no such fill type: {!r}'.format(character))

    # - - - - - - - - - fixed characters and their shapes - - - - - - - - -

    def _open_triangle_left(self, x, y):
        return [
            Line(
                Point(self.left(x), self.vcenter(y)),
                Point(self.right(x), self.top(y))
            ),
            Line(
                Point(self.left(x), self.vcenter(y)),
                Point(self.right(x), self.bottom(y))
            )
        ]

    def _open_triangle_right(self, x, y):
        return [
            Line(
                Point(self.right(x), self.vcenter(y)),
                Point(self.left(x), self.top(y))
            ),
            Line(
                Point(self.right(x), self.vcenter(y)),
                Point(self.left(x), self.bottom(y))
            )
        ]

    def _circle(self, x, y):
        return [
            Circle(Point(self.hcenter(x), self.vcenter(y)), NOMINAL_SIZE / 2.0)
        ]

    FIXED_TYPES = [
        ('{', '_open_triangle_left'),
        ('}', '_open_triangle_right'),
        ('*', '_circle'),
    ]

    FIXED_CHARACTERS = ''.join([t for (t, f) in FIXED_TYPES])

    def get_fixed_character(self, character):
        """Return fixed character function."""
        for head, function_name in self.FIXED_TYPES:
            if character == head:
                return getattr(self, function_name)
        raise ValueError('no such character: {!r}'.format(character))

    # - - - - - - - - - helper function for shape recognition - - - - - - - - -

    def _follow_vertical_line(self, x, y):
        """Find a vertical line with optional arrow heads."""
        # follow line to the bottom
        _, end_y, line_end_style = self._follow_line(x, y, dy=1, line_character='|')
        # follow line to the top
        _, start_y, line_start_style = self._follow_line(x, y, dy=-1, line_character='|')
        # if a '+' follows a line, then the line is stretched to hit the '+' center
        start_y_fix = end_y_fix = 0
        if self.get(x, start_y - 1) == '+':
            start_y_fix = -0.5
        if self.get(x, end_y + 1) == '+':
            end_y_fix = 0.5
        # tag characters as used (not the arrow heads)
        self.tag([(x, y) for y in range(start_y, end_y + 1)], CLASS_LINE)
        # return the new shape object with arrows etc.
        p1 = complex(self.hcenter(x), self.top(start_y + start_y_fix))
        p2 = complex(self.hcenter(x), self.bottom(end_y + end_y_fix))
        shapes = []
        if line_start_style:
            p1, arrow_shapes = line_start_style(p1, p2)
            shapes.extend(arrow_shapes)
        if line_end_style:
            p2, arrow_shapes = line_end_style(p2, p1)
            shapes.extend(arrow_shapes)
        shapes.append(Line(p1, p2))
        return group(shapes)

    def _follow_horizontal_line(self, x, y, thick=False):
        """Find a horizontal line with optional arrow heads."""
        if thick:
            line_character = '='
        else:
            line_character = '-'
        # follow line to the right
        end_x, _, line_end_style = self._follow_line(x, y, dx=1, line_character=line_character)
        # follow line to the left
        start_x, _, line_start_style = self._follow_line(x, y, dx=-1, line_character=line_character)
        start_x_fix = end_x_fix = 0
        if self.get(start_x - 1, y) == '+':
            start_x_fix = -0.5
        if self.get(end_x + 1, y) == '+':
            end_x_fix = 0.5
        self.tag([(x, y) for x in range(start_x, end_x+1)], CLASS_LINE)
        # return the new shape object with arrows etc.
        p1 = complex(self.left(start_x + start_x_fix), self.vcenter(y))
        p2 = complex(self.right(end_x + end_x_fix), self.vcenter(y))
        shapes = []
        if line_start_style:
            p1, arrow_shapes = line_start_style(p1, p2)
            shapes.extend(arrow_shapes)
        if line_end_style:
            p2, arrow_shapes = line_end_style(p2, p1)
            shapes.extend(arrow_shapes)
        shapes.append(Line(p1, p2, thick=thick))
        return group(shapes)

    def _follow_lower_horizontal_line(self, x, y):
        """\
        Find a horizontal line, the line is aligned to the bottom and a bit
        wider, so that it can be used for shapes like this:
           ___
        __|   |___
        """
        # follow line to the right
        end_x, _, line_end_style = self._follow_line(x, y, dx=1, line_character='_', arrows=False)
        # follow line to the left
        start_x, _, line_start_style = self._follow_line(x, y, dx=-1, line_character='_', arrows=False)
        self.tag([(x, y) for x in range(start_x, end_x + 1)], CLASS_LINE)
        # return the new shape object with arrows etc.
        p1 = complex(self.hcenter(start_x - 1), self.bottom(y))
        p2 = complex(self.hcenter(end_x + 1), self.bottom(y))
        return [Line(p1, p2)]

    def _follow_upper_horizontal_line(self, x, y):
        """\
        Find a horizontal line, the line is aligned to the bottom and a bit
        wider, so that it can be used for shapes like this:

          |~~~|
        ~~     ~~~
        """
        # follow line to the right
        end_x, _, line_end_style = self._follow_line(x, y, dx=1, line_character='~', arrows=False)
        # follow line to the left
        start_x, _, line_start_style = self._follow_line(x, y, dx=-1, line_character='~', arrows=False)
        self.tag([(x, y) for x in range(start_x, end_x + 1)], CLASS_LINE)
        # return the new shape object with arrows etc.
        p1 = complex(self.hcenter(start_x - 1), self.top(y))
        p2 = complex(self.hcenter(end_x + 1), self.top(y))
        return [Line(p1, p2)]

    def _follow_line(self, x, y, dx=0, dy=0, line_character=None, arrows=True):
        """Helper function for all the line functions."""
        # follow line in the given direction
        while 0 <= x < self.width and 0 <= y < self.height and self.get(x+dx, y+dy) == line_character:
            x += dx
            y += dy
        if arrows:
            # check for arrow head
            following_character = self.get(x + dx, y + dy)
            if following_character in self.ARROW_HEADS:
                line_end_style = self.get_arrow(following_character, dx, dy)
                if line_end_style:
                    x += dx
                    y += dy
            else:
                line_end_style = None
        else:
            line_end_style = None
        return x, y, line_end_style

    def _plus_joiner(self, x, y):
        """\
        Adjacent '+' signs are connected with a line from center to center
        required for images like these:

           +---+         The box should be closed on all sides
           |   +--->     and the arrow start should touch the box.
           +---+
        """
        result = []
        #~ for dx, dy in ((1,0), (-1,0), (0,1), (0,-1)):
        # looking right and down is sufficient as the scan is done from left to
        # right, top to bottom
        for dx, dy in ((1, 0), (0, 1)):
            if self.get(x + dx, y + dy) == '+':
                result.append(Line(
                    Point(self.hcenter(x), self.vcenter(y)),
                    Point(self.hcenter(x + dx), self.vcenter(y + dy))
                ))
        self.tag([(x, y)], CLASS_JOIN)
        return result

    def _follow_fill(self, character, start_x, start_y):
        """\
        Fill shapes like the ones below with a pattern. when the character is
        upper case, draw a border too.

            XXX  aaa  BB
           XXX    a
        """
        fill = self.get_fill(character.upper())
        border = character.isupper()
        result = []
        # flood fill algorithm, searching for similar characters
        to_scan = [(start_x, start_y)]
        while to_scan:
            x, y = to_scan.pop()
            if self.cls(x, y) is None:
                if self.get(x, y) == character:
                    result.extend(fill(x, y))
                    self.tag([(x, y)], CLASS_RECTANGLE)
                if self.get(x + 1, y) == character:
                    if self.cls(x + 1, y) is None:
                        to_scan.append((x + 1, y))
                elif border:
                    result.append(Line(
                        Point(self.right(x), self.top(y)),
                        Point(self.right(x), self.bottom(y))))
                if self.get(x - 1, y) == character:
                    if self.cls(x - 1, y) is None:
                        to_scan.append((x - 1, y))
                elif border:
                    result.append(Line(
                        Point(self.left(x), self.top(y)),
                        Point(self.left(x), self.bottom(y))))
                if self.get(x, y + 1) == character:
                    if self.cls(x, y + 1) is None:
                        to_scan.append((x, y + 1))
                elif border:
                    result.append(Line(
                        Point(self.left(x), self.bottom(y)),
                        Point(self.right(x), self.bottom(y))))
                if self.get(x, y - 1) == character:
                    if self.cls(x, y - 1) is None:
                        to_scan.append((x, y - 1))
                elif border:
                    result.append(Line(
                        Point(self.left(x), self.top(y)),
                        Point(self.right(x), self.top(y))))
        return group(result)

    def _follow_horizontal_string(self, start_x, y, accept_anything=False, quoted=False):
        """\
        Find a string. may contain single spaces, but the detection is
        aborted after more than one space.

              Text one   "Text two"

        accept_anything means that all non space characters are interpreted
        as text.
        """
        # follow line from left to right
        if quoted:
            quotation_character = self.get(start_x, y)
            x = start_x + 1
        else:
            quotation_character = None
            x = start_x
        text = []
        if self.get(x, y) != ' ':
            text.append(self.get(x, y))
            self.tag([(x, y)], CLASS_STRING)
            is_first_space = True
            while 0 <= x + 1 < self.width and self.cls(x + 1, y) is None:
                if not quoted:
                    if self.get(x + 1, y) == ' ' and not is_first_space:
                        break
                    if not accept_anything and not self.get(x + 1, y).isalnum():
                        break
                x += 1
                character = self.get(x, y)
                if character == quotation_character:
                    self.tag([(x, y)], CLASS_STRING)
                    break
                text.append(character)
                if character == ' ':
                    is_first_space = False
                else:
                    is_first_space = True
            if text[-1] == ' ':
                del text[-1]
                x -= 1
            self.tag([(x, y) for x in range(start_x, x + 1)], CLASS_STRING)
            return [Label(
                Point(self.left(start_x), self.bottom(y)),
                ''.join(text)
            )]
        else:
            return []

    def _follow_rounded_edge(self, x, y):
        r"""\
        Check for rounded edges:
            /-    |     -\-    |   and also \    /  etc.
            |    -/      |     \-            -  |
        """
        result = []
        if self.get(x, y) == '/':
            # rounded rectangles
            if (self.get(x + 1, y) == '-' and self.get(x, y + 1) == '|'):
                # upper left corner
                result.append(Arc(
                    Point(self.hcenter(x), self.bottom(y)), 90,
                    Point(self.right(x), self.vcenter(y)),  180
                ))
            if self.get(x - 1, y) == '-' and self.get(x, y - 1) == '|':
                # lower right corner
                result.append(Arc(
                    Point(self.hcenter(x), self.top(y)), -90,
                    Point(self.left(x), self.vcenter(y)), 0
                ))
            if not result:
                # if used as diagonal line
                p1 = p2 = None
                a1 = a2 = 0
                arc = c1 = c2 = False
                if self.get(x + 1, y - 1) == '|':
                    p1 = Point(self.hcenter(x + 1), self.top(y))
                    a1 = -90
                    arc = c1 = True
                elif self.get(x + 1, y - 1) == '+':
                    p1 = Point(self.hcenter(x + 1), self.vcenter(y - 1))
                    a1 = -135
                elif self.get(x + 1, y - 1) == '-':
                    p1 = Point(self.right(x), self.vcenter(y - 1))
                    a1 = 180
                    arc = c1 = True
                elif self.get(x + 1, y - 1) == '/':
                    p1 = Point(self.right(x), self.top(y))
                    a1 = -135
                    c1 = True
                elif self.get(x + 1, y) == '|':
                    p1 = Point(self.hcenter(x + 1), self.top(y))
                elif self.get(x, y - 1) == '-':
                    p1 = Point(self.right(x), self.vcenter(y - 1))

                if self.get(x - 1, y + 1) == '|':
                    p2 = Point(self.hcenter(x - 1), self.top(y + 1))
                    a2 = 90
                    arc = c2 = True
                elif self.get(x - 1, y + 1) == '+':
                    p2 = Point(self.hcenter(x - 1), self.vcenter(y + 1))
                    a2 = 45
                elif self.get(x - 1, y + 1) == '-':
                    p2 = Point(self.left(x), self.vcenter(y + 1))
                    a2 = 0
                    arc = c2 = True
                elif self.get(x - 1, y + 1) == '/':
                    p2 = Point(self.left(x), self.bottom(y))
                    a2 = 45
                    c2 = True
                elif self.get(x - 1, y) == '|':
                    p2 = Point(self.hcenter(x - 1), self.bottom(y))
                elif self.get(x, y + 1) == '-':
                    p2 = Point(self.left(x), self.vcenter(y + 1))

                if p1 or p2:
                    if not p1:
                        p1 = Point(self.right(x), self.top(y))
                    if not p2:
                        p2 = Point(self.left(x), self.bottom(y))
                    if arc and self.rounded:
                        result.append(Arc(p1, a1, p2, a2, c1, c2))
                    else:
                        result.append(Line(p1, p2))
        else:  # '\'
            # rounded rectangles
            if self.get(x-1, y) == '-' and self.get(x, y + 1) == '|':
                # upper right corner
                result.append(Arc(
                    Point(self.hcenter(x), self.bottom(y)), 90,
                    Point(self.left(x), self.vcenter(y)), 0
                ))
            if self.get(x+1, y) == '-' and self.get(x, y - 1) == '|':
                # lower left corner
                result.append(Arc(
                    Point(self.hcenter(x), self.top(y)), -90,
                    Point(self.right(x), self.vcenter(y)), 180
                ))
            if not result:
                # if used as diagonal line
                p1 = p2 = None
                a1 = a2 = 0
                arc = c1 = c2 = False
                if self.get(x - 1, y - 1) == '|':
                    p1 = Point(self.hcenter(x-1), self.top(y))
                    a1 = -90
                    arc = c1 = True
                elif self.get(x - 1, y - 1) == '+':
                    p1 = Point(self.hcenter(x-1), self.vcenter(y - 1))
                    a1 = -45
                elif self.get(x - 1, y - 1) == '-':
                    p1 = Point(self.left(x), self.vcenter(y-1))
                    a1 = 0
                    arc = c1 = True
                elif self.get(x - 1, y - 1) == '\\':
                    p1 = Point(self.left(x), self.top(y))
                    a1 = -45
                    c1 = True
                elif self.get(x - 1, y) == '|':
                    p1 = Point(self.hcenter(x-1), self.top(y))
                elif self.get(x, y - 1) == '-':
                    p1 = Point(self.left(x), self.hcenter(y - 1))

                if self.get(x + 1, y + 1) == '|':
                    p2 = Point(self.hcenter(x+1), self.top(y + 1))
                    a2 = 90
                    arc = c2 = True
                elif self.get(x + 1, y + 1) == '+':
                    p2 = Point(self.hcenter(x+1), self.vcenter(y + 1))
                    a2 = 135
                elif self.get(x + 1, y + 1) == '-':
                    p2 = Point(self.right(x), self.vcenter(y + 1))
                    a2 = 180
                    arc = c2 = True
                elif self.get(x + 1, y + 1) == '\\':
                    p2 = Point(self.right(x), self.bottom(y))
                    a2 = 135
                    c2 = True
                elif self.get(x + 1, y) == '|':
                    p2 = Point(self.hcenter(x+1), self.bottom(y))
                elif self.get(x, y + 1) == '-':
                    p2 = Point(self.right(x), self.vcenter(y + 1))

                if p1 or p2:
                    if not p1:
                        p1 = Point(self.left(x), self.top(y))
                    if not p2:
                        p2 = Point(self.right(x), self.bottom(y))
                    if arc and self.rounded:
                        result.append(Arc(p1, a1, p2, a2, c1, c2))
                    else:
                        result.append(Line(p1, p2))
        if result:
            self.tag([(x, y)], CLASS_JOIN)
        return group(result)


def process(input, visitor_class, options=None):
    """\
    Parse input and render using the given visitor class.

    :param input: String or file like object with the image as text.

    :param visitor_class: A class object, it will be used to render the
        resulting image.

    :param options: A dictionary containing the settings. When ``None`` is
        given, defaults are used.

    :returns: instantiated ``visitor_class`` and the image has already been
        processed with the visitor.

    :exception: This function can raise an ``UnsupportedFormatError`` exception
        if the specified format is not supported.
    """

    # remember user options (don't want to rename function parameter above)
    user_options = options
    # start with a copy of the defaults
    options = DEFAULT_OPTIONS.copy()
    if user_options is not None:
        # override with settings passed by caller
        options.update(user_options)

    if 'fill' not in options or options['fill'] is None:
        options['fill'] = options['foreground']

    # if input is a file like object, read from it (otherwise it is assumed to
    # be a string)
    if hasattr(input, 'read'):
        input = input.read()

    if options['debug']:
        sys.stderr.write('{!r}\n'.format(input))

    aaimg = AsciiArtImage(input, options)

    if options['debug']:
        sys.stderr.write('{}\n'.format(aaimg))
    aaimg.recognize()

    visitor = visitor_class(options)
    visitor.visit_image(aaimg)
    return visitor


def render(input, output=None, options=None):
    """\
    Render an ASCII art figure to a file or file-like.

    :param input: If ``input`` is a basestring subclass (str or unicode), the
        text contained in ``input`` is rendered. If ``input is a file-like
        object, the text to render is taken using ``input.read()``.

    :param output: If no ``output`` is specified, the resulting rendered image
        is returned as a string. If output is a basestring subclass, a file
        with the name of ``output`` contents is created and the rendered image
        is saved there. If ``output`` is a file-like object, ``output.write()``
        is used to save the rendered image.

    :param options: A dictionary containing the settings. When ``None`` is
        given, defaults are used.

    :returns: This function returns a tuple ``(visitor, output)``, where
        ``visitor`` is visitor instance that rendered the image and ``output``
        is the image as requested by the ``output`` parameter (a ``str`` if it
        was ``None``, or a file-like object otherwise, which you should
        ``close()`` if needed).

    :exception: This function can raise an ``UnsupportedFormatError`` exception
        if the specified format is not supported.
    """

    if options is None:
        options = {}

    close_output = False
    if output is None:
        from io import BytesIO
        options['file_like'] = BytesIO()
    elif isinstance(output, basestring):
        options['file_like'] = open(output, 'wb')
        close_output = True
    else:
        options['file_like'] = output
    try:
        # late import of visitor classes to not cause any import errors for
        # unsupported backends (this would happen when a library a backend
        # depends on is not installed)
        if options['format'].lower() == 'svg':
            from . import svg
            visitor_class = svg.SVGOutputVisitor
        elif options['format'].lower() == 'pdf':
            from . import pdf
            visitor_class = pdf.PDFOutputVisitor
        elif options['format'].lower() == 'ascii':
            from . import aa
            visitor_class = aa.AsciiOutputVisitor
        else:
            # for all other formats, it may be a bitmap type. let
            # PIL decide if it can write a file of that type.
            from . import pil
            visitor_class = pil.PILOutputVisitor
        # now render and output the image
        visitor = process(input, visitor_class, options)
    finally:
        if close_output:
            options['file_like'].close()
    file_like = options.pop('file_like')
    return (visitor, file_like)


def main():
    """implement an useful main for use as command line program"""
    import sys
    import optparse
    import os.path

    parser = optparse.OptionParser(
        usage="%prog [options] [file]",
        version="""\
%prog 0.5

Copyright (C) 2006-2017 aafigure-team

Redistribution and use in source and binary forms, with or without
modification, are permitted under the terms of the BSD License.

THIS SOFTWARE IS PROVIDED BY THE AAFIGURE-TEAM ''AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AAFIGURE-TEAM BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
""",
        description="ASCII art to image (SVG, PNG, JPEG, PDF and more) converter."
    )

    parser.add_option(
        "-e", "--encoding",
        dest="encoding",
        action="store",
        help="character encoding of input text",
        default=DEFAULT_OPTIONS['encoding'],
    )

    parser.add_option(
        "-w", "--wide-chars",
        dest="widechars",
        action="store",
        help="unicode properties to be treated as wide glyph (e.g. 'F,W,A')",
        default=DEFAULT_OPTIONS['widechars'],
    )

    parser.add_option(
        "-o", "--output",
        dest="output",
        metavar="FILE",
        help="write output to FILE"
    )

    parser.add_option(
        "-t", "--type",
        dest="format",
        help="filetype: png, jpg, svg (by default autodetect from filename)",
        default=None,
    )

    parser.add_option(
        "-D", "--debug",
        dest="debug",
        action="store_true",
        help="enable debug outputs",
        default=DEFAULT_OPTIONS['debug'],
    )

    parser.add_option(
        "-T", "--textual",
        dest="textual",
        action="store_true",
        help="disable horizontal fill detection",
        default=DEFAULT_OPTIONS['textual'],
    )

    parser.add_option(
        "-S", "--textual-strict",
        dest="textual_strict",
        action="store_true",
        help="disable horizontal and vertical fill detection",
        default=DEFAULT_OPTIONS['textual_strict'],
    )

    parser.add_option(
        "-s", "--scale",
        dest="scale",
        action="store",
        type='float',
        help="set scale",
        default=DEFAULT_OPTIONS['scale'],
    )

    parser.add_option(
        "-a", "--aspect",
        dest="aspect",
        action="store",
        type='float',
        help="set aspect ratio",
        default=DEFAULT_OPTIONS['aspect'],
    )

    parser.add_option(
        "-l", "--linewidth",
        dest="line_width",
        action="store",
        type='float',
        help="set width, svg only",
        default=DEFAULT_OPTIONS['line_width'],
    )

    parser.add_option(
        "--proportional",
        dest="proportional",
        action="store_true",
        help="use proportional font instead of fixed width",
        default=DEFAULT_OPTIONS['proportional'],
    )

    parser.add_option(
        "-f", "--foreground",
        dest="foreground",
        action="store",
        help="foreground color default=%default",
        default=DEFAULT_OPTIONS['foreground'],
    )

    parser.add_option(
        "-x", "--fill",
        dest="fill",
        action="store",
        help="foreground color default=foreground",
        default=None,
    )

    parser.add_option(
        "-b", "--background",
        dest="background",
        action="store",
        help="foreground color default=%default",
        default=DEFAULT_OPTIONS['background'],
    )

    parser.add_option(
        "--rounded",
        dest="rounded",
        action="store_true",
        help="use arcs for rounded edges instead of straight lines",
        default=DEFAULT_OPTIONS['proportional'],
    )

    parser.add_option(
        "-O", "--option",
        dest="_extra_options",
        action="append",
        help="pass special options to backends (expert user)",
    )

    (options, args) = parser.parse_args()

    if len(args) > 1:
        parser.error("too many arguments")

    if options.format is None:
        if options.output is None:
            parser.error("Please specify output format with --type")
        else:
            options.format = os.path.splitext(options.output)[1][1:]

    if args:
        input = open(args[0])
    else:
        input = sys.stdin
    #~ input = codecs.getreader(options.encoding)(input)

    if options.output is None:
        output = sys.stdout
    else:
        output = open(options.output, 'wb')

    # explicit copying of parameters to the options dictionary
    options_dict = {}
    for key in ('widechars', 'textual', 'textual_strict',
                'proportional', 'line_width', 'aspect',
                'scale', 'format', 'debug'):
        options_dict[key] = getattr(options, key)
    # ensure all color parameters start with a '#'
    # this is for the convenience of the user as typing the shell comment
    # character isn't for everyone ;-)
    for color in ('foreground', 'background', 'fill'):
        value = getattr(options, color)
        if value is not None:
            if value[0] != '#':
                options_dict[color] = '#{}'.format(value)
            else:
                options_dict[color] = value
    # copy extra options
    if options._extra_options is not None:
        for keyvalue in options._extra_options:
            try:
                key, value = keyvalue.split('=')
            except ValueError:
                parser.error('--option must be in the format <key>=<value> (not {!r})'.format(keyvalue))
            options_dict[key] = value

    if options.debug:
        sys.stderr.write('options={!r}\n'.format(options_dict))

    try:
        (visitor, output) = render(input, output, options_dict)
        output.close()
    except UnsupportedFormatError as e:
        print("ERROR: Can't output format '{}': {}".format(options.format, e))


# when module is run, run the command line tool
if __name__ == '__main__':
    main()