1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
|
"""Service object implementation for SQLAlchemy.
RepositoryService object is generic on the domain model type which
should be a SQLAlchemy model.
"""
import datetime
from collections.abc import Sequence
from enum import Enum
from functools import lru_cache, partial
from pathlib import Path, PurePath
from typing import TYPE_CHECKING, Any, Callable, Optional, Union, cast, overload
from uuid import UUID
from advanced_alchemy.exceptions import AdvancedAlchemyError
from advanced_alchemy.filters import LimitOffset, StatementFilter
from advanced_alchemy.service.pagination import OffsetPagination
from advanced_alchemy.service.typing import (
ATTRS_INSTALLED,
CATTRS_INSTALLED,
MSGSPEC_INSTALLED,
PYDANTIC_INSTALLED,
BaseModel,
FilterTypeT,
ModelDTOT,
Struct,
convert,
fields,
get_type_adapter,
is_attrs_schema,
schema_dump,
structure,
)
if TYPE_CHECKING:
from sqlalchemy import ColumnElement, RowMapping
from sqlalchemy.engine.row import Row
from advanced_alchemy.base import ModelProtocol
from advanced_alchemy.repository.typing import ModelOrRowMappingT
__all__ = ("ResultConverter", "find_filter")
DEFAULT_TYPE_DECODERS = [ # pyright: ignore[reportUnknownVariableType]
(lambda x: x is UUID, lambda t, v: t(v.hex)), # pyright: ignore[reportUnknownLambdaType,reportUnknownMemberType]
(lambda x: x is datetime.datetime, lambda t, v: t(v.isoformat())), # pyright: ignore[reportUnknownLambdaType,reportUnknownMemberType]
(lambda x: x is datetime.date, lambda t, v: t(v.isoformat())), # pyright: ignore[reportUnknownLambdaType,reportUnknownMemberType]
(lambda x: x is datetime.time, lambda t, v: t(v.isoformat())), # pyright: ignore[reportUnknownLambdaType,reportUnknownMemberType]
(lambda x: x is Enum, lambda t, v: t(v.value)), # pyright: ignore[reportUnknownLambdaType,reportUnknownMemberType]
]
def find_filter(
filter_type: type[FilterTypeT],
filters: "Union[Sequence[Union[StatementFilter, ColumnElement[bool]]], Sequence[StatementFilter]]",
) -> "Union[FilterTypeT, None]":
"""Get the filter specified by filter type from the filters.
Args:
filter_type: The type of filter to find.
filters: filter types to apply to the query
Returns:
The match filter instance or None
"""
return next(
(cast("Optional[FilterTypeT]", filter_) for filter_ in filters if isinstance(filter_, filter_type)),
None,
)
class ResultConverter:
"""Simple mixin to help convert to a paginated response model.
Single objects are transformed to the supplied schema type, and lists of objects are automatically transformed into an `OffsetPagination` response of the supplied schema type.
Args:
data: A database model instance or row mapping.
Type: :class:`~advanced_alchemy.repository.typing.ModelOrRowMappingT`
Returns:
The converted schema object.
"""
@overload
def to_schema(
self,
data: "ModelOrRowMappingT",
*,
schema_type: None = None,
) -> "ModelOrRowMappingT": ...
@overload
def to_schema(
self,
data: "Union[ModelProtocol, RowMapping, Row[Any], dict[str, Any]]",
*,
schema_type: "type[ModelDTOT]",
) -> "ModelDTOT": ...
@overload
def to_schema(
self,
data: "ModelOrRowMappingT",
total: "Optional[int]" = None,
*,
schema_type: None = None,
) -> "ModelOrRowMappingT": ...
@overload
def to_schema(
self,
data: "Union[ModelProtocol, RowMapping, Row[Any], dict[str, Any]]",
total: "Optional[int]" = None,
*,
schema_type: "type[ModelDTOT]",
) -> "ModelDTOT": ...
@overload
def to_schema(
self,
data: "ModelOrRowMappingT",
total: "Optional[int]" = None,
filters: "Union[Sequence[Union[StatementFilter, ColumnElement[bool]]], Sequence[StatementFilter], None]" = None,
*,
schema_type: None = None,
) -> "ModelOrRowMappingT": ...
@overload
def to_schema(
self,
data: "Union[ModelProtocol, RowMapping, Row[Any], dict[str, Any]]",
total: "Optional[int]" = None,
filters: "Union[Sequence[Union[StatementFilter, ColumnElement[bool]]], Sequence[StatementFilter], None]" = None,
*,
schema_type: "type[ModelDTOT]",
) -> "ModelDTOT": ...
@overload
def to_schema(
self,
data: "Sequence[Row[Any]]",
total: "int",
) -> "OffsetPagination[Row[Any]]": ...
@overload
def to_schema(
self,
data: "Sequence[ModelOrRowMappingT]",
*,
schema_type: None = None,
) -> "OffsetPagination[ModelOrRowMappingT]": ...
@overload
def to_schema(
self,
data: "Union[Sequence[ModelProtocol], Sequence[RowMapping], Sequence[Row[Any]], Sequence[dict[str, Any]]]",
*,
schema_type: "type[ModelDTOT]",
) -> "OffsetPagination[ModelDTOT]": ...
@overload
def to_schema(
self,
data: "Sequence[ModelOrRowMappingT]",
total: "Optional[int]" = None,
filters: "Union[Sequence[Union[StatementFilter, ColumnElement[bool]]], Sequence[StatementFilter], None]" = None,
*,
schema_type: None = None,
) -> "OffsetPagination[ModelOrRowMappingT]": ...
@overload
def to_schema(
self,
data: "Union[Sequence[ModelProtocol], Sequence[RowMapping], Sequence[Row[Any]], Sequence[dict[str, Any]]]",
total: "Optional[int]" = None,
filters: "Union[Sequence[Union[StatementFilter, ColumnElement[bool]]], Sequence[StatementFilter], None]" = None,
*,
schema_type: "type[ModelDTOT]",
) -> "OffsetPagination[ModelDTOT]": ...
def to_schema(
self,
data: "Union[ModelOrRowMappingT, Sequence[ModelOrRowMappingT], ModelProtocol, Sequence[ModelProtocol], RowMapping, Sequence[RowMapping], Row[Any], Sequence[Row[Any]], dict[str, Any], Sequence[dict[str, Any]]]",
total: "Optional[int]" = None,
filters: "Union[Sequence[Union[StatementFilter, ColumnElement[bool]]], Sequence[StatementFilter], None]" = None,
*,
schema_type: "Optional[type[ModelDTOT]]" = None,
) -> "Union[ModelOrRowMappingT, OffsetPagination[ModelOrRowMappingT], ModelDTOT, OffsetPagination[ModelDTOT]]":
"""Convert the object to a response schema.
When `schema_type` is None, the model is returned with no conversion.
Args:
data: The return from one of the service calls.
Type: :class:`~advanced_alchemy.repository.typing.ModelOrRowMappingT`
total: The total number of rows in the data.
filters: :class:`~advanced_alchemy.filters.StatementFilter`| :class:`sqlalchemy.sql.expression.ColumnElement` Collection of route filters.
schema_type: :class:`~advanced_alchemy.service.typing.ModelDTOT` Optional schema type to convert the data to
Raises:
AdvancedAlchemyError: If `schema_type` is not a valid Pydantic, Msgspec, or attrs schema and all libraries are not installed.
Returns:
:class:`~advanced_alchemy.base.ModelProtocol` | :class:`sqlalchemy.orm.RowMapping` | :class:`~advanced_alchemy.service.pagination.OffsetPagination` | :class:`msgspec.Struct` | :class:`pydantic.BaseModel` | :class:`attrs class`
"""
if filters is None:
filters = []
if schema_type is None:
if not isinstance(data, Sequence):
return cast("ModelOrRowMappingT", data) # type: ignore[unreachable,unused-ignore]
return cast(
"OffsetPagination[ModelOrRowMappingT]",
_create_pagination(cast("Sequence[ModelOrRowMappingT]", data), filters, total),
)
if MSGSPEC_INSTALLED and issubclass(schema_type, Struct):
if not isinstance(data, Sequence):
return cast( # type: ignore[redundant-cast]
"ModelDTOT",
convert(
obj=data,
type=schema_type,
from_attributes=True,
dec_hook=partial(
_default_msgspec_deserializer,
type_decoders=DEFAULT_TYPE_DECODERS,
),
),
)
converted_items = convert(
obj=data,
type=list[schema_type], # type: ignore[valid-type]
from_attributes=True,
dec_hook=partial(
_default_msgspec_deserializer,
type_decoders=DEFAULT_TYPE_DECODERS,
),
)
return cast("OffsetPagination[ModelDTOT]", _create_pagination(converted_items, filters, total))
if PYDANTIC_INSTALLED and issubclass(schema_type, BaseModel):
if not isinstance(data, Sequence):
return cast(
"ModelDTOT",
get_type_adapter(schema_type).validate_python(data, from_attributes=True),
)
validated_items = get_type_adapter(list[schema_type]).validate_python(data, from_attributes=True) # type: ignore[valid-type] # pyright: ignore[reportUnknownArgumentType]
return cast("OffsetPagination[ModelDTOT]", _create_pagination(validated_items, filters, total))
if CATTRS_INSTALLED and is_attrs_schema(schema_type):
if not isinstance(data, Sequence):
return cast("ModelDTOT", structure(schema_dump(data), schema_type))
structured_items = [cast("ModelDTOT", structure(schema_dump(item), schema_type)) for item in data]
return cast("OffsetPagination[ModelDTOT]", _create_pagination(structured_items, filters, total))
if ATTRS_INSTALLED and is_attrs_schema(schema_type):
# Cache field names for performance
field_names = _get_attrs_field_names(schema_type) # type: ignore[arg-type]
if not isinstance(data, Sequence):
return cast("ModelDTOT", _convert_attrs_item(data, schema_type, field_names))
converted_items = [_convert_attrs_item(item, schema_type, field_names) for item in data]
return cast("OffsetPagination[ModelDTOT]", _create_pagination(converted_items, filters, total))
if not MSGSPEC_INSTALLED and not PYDANTIC_INSTALLED and not ATTRS_INSTALLED:
msg = "Either Msgspec, Pydantic, or attrs must be installed to use schema conversion"
raise AdvancedAlchemyError(msg)
msg = "`schema_type` should be a valid Pydantic, Msgspec, or attrs schema"
raise AdvancedAlchemyError(msg)
# Private helper functions
def _default_msgspec_deserializer(
target_type: Any,
value: Any,
type_decoders: "Union[Sequence[tuple[Callable[[Any], bool], Callable[[Any, Any], Any]]], None]" = None,
) -> Any: # pragma: no cover
"""Transform values non-natively supported by ``msgspec``
Args:
target_type: Encountered type
value: Value to coerce
type_decoders: Optional sequence of type decoders
Raises:
TypeError: If the value cannot be coerced to the target type
Returns:
A ``msgspec``-supported type
"""
if isinstance(value, target_type):
return value
if type_decoders:
for predicate, decoder in type_decoders:
if predicate(target_type):
return decoder(target_type, value)
if issubclass(target_type, (Path, PurePath, UUID)):
return target_type(value)
try:
return target_type(value)
except Exception as e:
msg = f"Unsupported type: {type(value)!r}"
raise TypeError(msg) from e
@lru_cache(maxsize=128)
def _get_attrs_field_names(schema_type: "type[Any]") -> "set[str]":
"""Get and cache the field names for a given attrs class.
Args:
schema_type: attrs class to get field names for.
Returns:
Set of field names for the attrs class.
"""
if ATTRS_INSTALLED and is_attrs_schema(schema_type):
return {field.name for field in fields(schema_type)}
return set()
def _convert_attrs_item(item: Any, schema_type: "type[ModelDTOT]", field_names: "set[str]") -> "ModelDTOT":
"""Convert a single item to attrs schema using cached field names.
Args:
item: Item to convert.
schema_type: Target attrs schema type.
field_names: Cached set of field names.
Returns:
Converted attrs instance.
"""
item_dict = schema_dump(item)
filtered_dict = {k: v for k, v in item_dict.items() if k in field_names}
return schema_type(**filtered_dict) # type: ignore[return-value]
def _create_pagination(items: Any, filters: Any, total: "Optional[int]") -> "OffsetPagination[Any]":
"""Create OffsetPagination with consistent limit_offset logic.
Args:
items: Items to paginate.
filters: Filters to extract LimitOffset from.
total: Total count or None.
Returns:
OffsetPagination instance.
"""
limit_offset = find_filter(LimitOffset, filters=filters) or LimitOffset(limit=len(items), offset=0)
return OffsetPagination(
items=items,
limit=limit_offset.limit,
offset=limit_offset.offset,
total=total or len(items),
)
|