File: transform.rst

package info (click to toggle)
python-agate 1.13.0-1~exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 2,008 kB
  • sloc: python: 8,578; makefile: 126
file content (205 lines) | stat: -rw-r--r-- 6,301 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
=========
Transform
=========

Pivot by a single column
========================

The :meth:`.Table.pivot` method is a general process for grouping data by row and, optionally, by column, and then calculating some aggregation for each group. Consider the following table:

+---------+---------+--------+-------+
|  name   | race    | gender | age   |
+=========+=========+========+=======+
|  Joe    | white   | female | 20    |
+---------+---------+--------+-------+
|  Jane   | asian   | male   | 20    |
+---------+---------+--------+-------+
|  Jill   | black   | female | 20    |
+---------+---------+--------+-------+
|  Jim    | latino  | male   | 25    |
+---------+---------+--------+-------+
|  Julia  | black   | female | 25    |
+---------+---------+--------+-------+
|  Joan   | asian   | female | 25    |
+---------+---------+--------+-------+

In the very simplest case, this table can be pivoted to count the number occurences of values in a column:

.. code-block:: python

    transformed = table.pivot('race')

Result:

+---------+--------+
| race    | pivot  |
+=========+========+
| white   | 1      |
+---------+--------+
| asian   | 2      |
+---------+--------+
| black   | 2      |
+---------+--------+
| latino  | 1      |
+---------+--------+

Pivot by multiple columns
=========================

You can pivot by multiple columns either as additional row-groups, or as intersecting columns. For example, given the table in the previous example:

.. code-block:: python

    transformed = table.pivot(['race', 'gender'])

Result:

+---------+--------+-------+
| race    | gender | pivot |
+=========+========+=======+
| white   | female | 1     |
+---------+--------+-------+
| asian   | male   | 1     |
+---------+--------+-------+
| black   | female | 2     |
+---------+--------+-------+
| latino  | male   | 1     |
+---------+--------+-------+
| asian   | female | 1     |
+---------+--------+-------+

For the column, version you would do:

.. code-block:: python

    transformed = table.pivot('race', 'gender')

Result:

+---------+--------+--------+
| race    | male   | female |
+=========+========+========+
| white   | 0      | 1      |
+---------+--------+--------+
| asian   | 1      | 1      |
+---------+--------+--------+
| black   | 0      | 2      |
+---------+--------+--------+
| latino  | 1      | 0      |
+---------+--------+--------+

Pivot to sum
============

The default pivot aggregation is :class:`.Count` but you can also supply other operations. For example, to aggregate each group by :class:`.Sum` of their ages:

.. code-block:: python

    transformed = table.pivot('race', 'gender', aggregation=agate.Sum('age'))

+---------+--------+--------+
| race    | male   | female |
+=========+========+========+
| white   | 0      | 20     |
+---------+--------+--------+
| asian   | 20     | 25     |
+---------+--------+--------+
| black   | 0      | 45     |
+---------+--------+--------+
| latino  | 25     | 0      |
+---------+--------+--------+

Pivot to percent of total
=========================

Pivot allows you to apply a :class:`.Computation` to each row of aggregated results prior to returning the table. Use the stringified name of the aggregation as the column argument to your computation:

.. code-block:: python

    transformed = table.pivot('race', 'gender', aggregation=agate.Sum('age'), computation=agate.Percent('sum'))

+---------+--------+--------+
| race    | male   | female |
+=========+========+========+
| white   | 0      | 14.8   |
+---------+--------+--------+
| asian   | 14.8   | 18.4   |
+---------+--------+--------+
| black   | 0      | 33.3   |
+---------+--------+--------+
| latino  | 18.4   | 0      |
+---------+--------+--------+

*Note: actual computed percentages will be much more precise.*

It's helpful when constructing these cases to think of all the cells in the pivot table as a single sequence.

Denormalize key/value columns into separate columns
===================================================

It's common for very large datasets to be distributed in a "normalized" format, such as:

+---------+-----------+---------+
|  name   | property  | value   |
+=========+===========+=========+
|  Jane   | gender    | female  |
+---------+-----------+---------+
|  Jane   | race      | black   |
+---------+-----------+---------+
|  Jane   | age       | 24      |
+---------+-----------+---------+
|  ...    |  ...      |  ...    |
+---------+-----------+---------+

The :meth:`.Table.denormalize` method can be used to transform the table so that each unique property has its own column.

.. code-block:: python

    transformed = table.denormalize('name', 'property', 'value')

Result:

+---------+----------+--------+-------+
|  name   | gender   | race   | age   |
+=========+==========+========+=======+
|  Jane   | female   | black  | 24    |
+---------+----------+--------+-------+
|  Jack   | male     | white  | 35    |
+---------+----------+--------+-------+
|  Joe    | male     | black  | 28    |
+---------+----------+--------+-------+

Normalize separate columns into key/value columns
=================================================

Sometimes you have a dataset where each property has its own column, but your analysis would be easier if all properties were stored together. Consider this table:

+---------+----------+--------+-------+
|  name   | gender   | race   | age   |
+=========+==========+========+=======+
|  Jane   | female   | black  | 24    |
+---------+----------+--------+-------+
|  Jack   | male     | white  | 35    |
+---------+----------+--------+-------+
|  Joe    | male     | black  | 28    |
+---------+----------+--------+-------+

The :meth:`.Table.normalize` method can be used to transform the table so that all the properties and their values share two columns.

.. code-block:: python

    transformed = table.normalize('name', ['gender', 'race', 'age'])

Result:

+---------+-----------+---------+
|  name   | property  | value   |
+=========+===========+=========+
|  Jane   | gender    | female  |
+---------+-----------+---------+
|  Jane   | race      | black   |
+---------+-----------+---------+
|  Jane   | age       | 24      |
+---------+-----------+---------+
|  ...    |  ...      |  ...    |
+---------+-----------+---------+