1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
|
__version__ = "0.4.6"
import configparser
from pathlib import Path
import struct
import numpy as np
DEBUG = False
def base_data_path(path: Path) -> Path:
"""
Find the correct base for data files
For example, folder with ["ab9.dmt", "AB9_0000_0000.dmd"] should return "AB9"
"""
if path.suffix == ".dmt":
for child in path.parent.iterdir():
if child.suffix == ".dmt":
continue
elif child.stem.casefold() == (path.stem + "_0000_0000").casefold():
return child.with_name(child.stem.split("_0000_0000")[0])
else:
return path
def bsp_path(path: Path) -> Path:
"""
Find the correct Path for the bsp file
Necessary as bsp can be equal to .dat/.seq, or lowercase
"""
bsp = path.with_suffix(".bsp")
if bsp.is_file():
return bsp
else:
return path.parent.joinpath(bsp.name.lower())
def check_files(filename, exts):
"""
takes filename string and list of extensions, checks that they all exist and
returns a Path
"""
p = Path(filename)
p = base_data_path(p)
for ext in exts:
if ext == ".dmt":
# Always lowercase
ps = dmt_path(p)
elif ext in [".drd", ".dmd"]:
# Always has at least _0000_0000 tile
ps = p.parent.joinpath(p.stem + "_0000_0000" + ext)
elif ext == ".bsp":
# Can be lowercase (if reprocessed, for example)
ps = bsp_path(p)
else:
ps = p.with_suffix(ext)
if not ps.is_file():
raise OSError('File "{}" was not found.'.format(ps))
return p
def dmt_path(path: Path) -> Path:
return path.parent.joinpath(path.with_suffix(".dmt").name.lower())
def _readint(f):
return struct.unpack("<i", f.read(4))[0]
def _readdouble(f):
return struct.unpack("<d", f.read(8))[0]
def _get_wavenumbers(f):
"""
takes an open file handle, grabs the startwavenumber, numberofpoints and step,
calculates wavenumbers array and returns all in dict
"""
d = {}
f.seek(2228)
d['StartPt'] = _readint(f)
f.seek(2236)
d['Npts'] = _readint(f)
f.seek(2216)
d['PtSep'] = _readdouble(f)
d['wavenumbers'] = [d['PtSep'] * (d['StartPt'] + i) for i in range(d['Npts'])]
if DEBUG:
for k,v in d.items():
if k == "wavenumbers":
print(k, len(v), v[0], v[-1], type(v))
else:
print(k,v, type(v))
return d
def _get_params(f):
"""
Takes an open file handle and reads a preset selection of parameters
returns in a dictionary
"""
STRP = b'\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19'
def _get_section(dat, section):
skip = [b'', b'\n', b'\"', b'\t', b',', b'\r', b'#', b'!', b'%',
b'\x0b', b'\x0c', b'\x0e', b'\x0f', b'\x1a', b'\x1c', b'\x1e', b'\x1f']
d = {}
part = dat.partition(bytes(section, encoding='utf8'))
dat = part[2].lstrip(STRP)
try:
n = dat[0]
except IndexError:
raise IndexError("Section not found")
dat = dat[1:].split(b'\x00')
i = 0
for n in range(n):
while dat[i].strip(STRP) in skip:
i += 1
k = dat[i].strip(STRP).decode('utf8', errors='replace')
i += 1
while dat[i].strip(STRP) in skip:
i += 1
if dat[i].strip(STRP) in [b'Data', b'PropType']:
# Give up, maybe end of section
return d
else:
v = dat[i].strip(STRP).decode('utf8', errors='replace')
i += 1
d[k] = v
return d
def _get_prop_d(dat, param):
part = dat.partition(bytes(param, encoding='utf8'))
val_b = part[2].partition(bytes("1.00", encoding='utf8'))[2]
val = struct.unpack("<d", val_b[12:20])[0]
return val
def _get_prop_str(dat, param):
b_param = b'\x00' + bytes(param, encoding='utf8') + b'\x04'
part = dat.partition(b_param)
val = part[2][:100].lstrip(STRP + b'\n').split(b'\x00')[0].strip(STRP)
return val.decode('utf8', errors='replace')
d = {}
f.seek(0)
dat = f.read()
d['Visible Pixel Size'] = _get_prop_d(dat, 'Visible Pixel Size')
d['FPA Pixel Size'] = _get_prop_d(dat, 'FPA Pixel Size')
d['Rapid Stingray'] = _get_section(dat, 'Rapid Stingray')
d['Time Stamp'] = d['Rapid Stingray']['Time Stamp']
k_int = ['PixelAggregationSize',
'Resolution',
'Under Sampling Ratio',
]
for k in k_int:
try:
d[k] = int(_get_prop_str(dat, k))
except ValueError:
pass
k_float = ['Effective Laser Wavenumber',
]
for k in k_float:
try:
d[k] = float(_get_prop_str(dat, k))
except ValueError as e:
pass
k_str = ['Symmetry',
]
for k in k_str:
d[k] = _get_prop_str(dat, k)
return d
def _get_ifg_params(f):
"""
Takes an open file handle and reads a preset selection of parameters
returns in a dictionary
"""
def _get_proptype_data(dat, param):
part = dat.partition(bytes(param, encoding='utf8'))
val_b = part[2].partition(bytes("1.00", encoding='utf8'))[2]
PtSep = struct.unpack("<d", val_b[12:20])[0]
StartPt = struct.unpack("<i", val_b[24:28])[0]
Npts = struct.unpack("<i", val_b[32:36])[0]
return PtSep, StartPt, Npts
d = {}
f.seek(0)
dat = f.read()
d['PtSep'], d['StartPt'], d['Npts'] = _get_proptype_data(dat, 'Interferogram')
if DEBUG:
for k,v in d.items():
print(k,v, type(v))
return d
def _fpa_size(datasize, Npts):
"""
Determine FPA size (255 block preamble, wavenumbers, sqrt)
FPA is most likely 128 or 64 pixels square
This also provides sanity check for wavelengths array
Args:
datasize (int): size of data (after reading as float32)
Npts (int): number of points in spectra
"""
fpa_full = datasize - 255
fpa_sq = fpa_full / Npts
fpasize = int(np.sqrt(fpa_sq))
if fpa_sq not in [(2**n)**2 for n in range(1,8)]:
raise ValueError(f"Unexpected FPA size: {fpa_sq}, ({fpasize}, {fpasize}, {Npts})")
return fpasize
def _reshape_tile(data, shape):
"""
Reshape and transpose FPA tile data
"""
# Reshape ndarray
data = data[255:]
# Using shape attribute to raise error if a copy is made of the array
data.shape = shape
# Transpose to standard [ rows, columns, wavelengths ]
data = np.transpose(data, (1,2,0))
return data
def get_visible_images(p):
"""
Takes a Path to the datafile and returns a list of visible images.
This only works for Mosaic datasets with "IRCutout.bmp" or "VisMosaicCollectImages_Thumbnail.bmp"
Each item is a dict with at least:
'name': IR Cutout or Entire Image
'image_ref' Path to image file
'pos_x' Bottom-left corner, x (microns)
'pos_y' Bottom-left corner, y (microns)
'img_size_x' Width of image (microns)
'img_size_y' Height of image (microns)
"""
visible_images = []
config = configparser.ConfigParser()
config.read(p.parent.joinpath("IrMosaicInfo.cfg"))
config.read(p.parent.joinpath("VisMosaicInfo.cfg"))
cutout_path = p.parent.joinpath("IrCutout.bmp")
if cutout_path.is_file() and config.has_section('MicronMeasurements'):
d = {'name': "IR Cutout",
'image_ref': cutout_path,
'pos_x': 0,
'pos_y': 0,
'img_size_x': float(config['MicronMeasurements']['IrCollectWidthMicrons']),
'img_size_y': float(config['MicronMeasurements']['IrCollectHeightMicrons']),
}
visible_images.append(d)
full_img_path = p.parent.joinpath("VisMosaicCollectImages_Thumbnail.bmp")
if full_img_path.is_file() and config.has_section('MicronMeasurements') \
and config.has_section('VisMosaicDefinition'):
d = {'name': "Entire Image",
'image_ref': full_img_path,
'pos_x': -1 * float(config['MicronMeasurements']['IrCollectStartLocationMicronsX']),
'pos_y': float(config['MicronMeasurements']['IrCollectStartLocationMicronsY'])
+ float(config['MicronMeasurements']['IrCollectHeightMicrons'])
- float(config['VisMosaicDefinition']['MosaicSizeMicronsY']),
'img_size_x': float(config['VisMosaicDefinition']['MosaicSizeMicronsX']),
'img_size_y': float(config['VisMosaicDefinition']['MosaicSizeMicronsY']),
}
visible_images.append(d)
return visible_images
class DataObject(object):
"""
Simple container of a data array and information about that array.
Based on PyMca5.DataObject
Attributes:
info (dict): Dictionary of acquisition information
data (:obj:`ndarray`): n-dimensional array of data
"""
def __init__(self):
self.info = {}
self.data = np.array([])
class agilentImage(DataObject):
"""
Extracts the spectra from an Agilent single tile FPA image.
Attributes beyond .info and .data are provided for consistency with MATLAB code
Args:
filename (str): full path to .dat file
MAT (bool): Output array using image coordinates (matplotlib/MATLAB)
Attributes:
info (dict): Dictionary of acquisition information
data (:obj:`ndarray`): 3-dimensional array (height x width x wavenumbers)
wavenumbers (list): Wavenumbers in order of .data array
width (int): Width of image in pixels (rows)
height (int): Width of image in pixels (columns)
filename (str): Full path to .bsp file
acqdate (str): Date and time of acquisition
Based on agilent-file-formats MATLAB code by Alex Henderson:
https://bitbucket.org/AlexHenderson/agilent-file-formats
"""
def __init__(self, filename, MAT=False):
super().__init__()
p = check_files(filename, [".dat", ".bsp"])
self.MAT = MAT
self._get_bsp_info(p)
self._get_dat(p)
self.wavenumbers = self.info['wavenumbers']
self.width = self.data.shape[0]
self.height = self.data.shape[1]
self.filename = bsp_path(p).as_posix()
self.acqdate = self.info['Time Stamp']
def _get_bsp_info(self, p_in):
p = bsp_path(p_in)
with p.open(mode='rb') as f:
self.info.update(_get_wavenumbers(f))
self.info.update(_get_params(f))
def _get_dat(self, p_in):
p = p_in.with_suffix(".dat")
with p.open(mode='rb') as f:
data = np.fromfile(f, dtype='<f')
fpasize = _fpa_size(data.size, self.info['Npts'])
data = _reshape_tile(data, (self.info['Npts'], fpasize, fpasize))
if self.MAT:
# Rotate and flip tile to match matplotlib/MATLAB image coordinates
data = np.flipud(data)
self.data = data
if DEBUG:
print("FPA Size is {}".format(fpasize))
def make_tile_loader(path, Npts, fpasize):
"""
Returns a closure which will load the tile at :path: when called.
If the file is not present at loading time, return expected array filled with NaNs
"""
def load_tile_data(path=path):
shape = (Npts, fpasize, fpasize)
shape_t = (shape[1], shape[2], shape[0])
if path.is_file():
with path.open(mode='rb') as f:
tile = np.fromfile(f, dtype='<f')
tile = _reshape_tile(tile, shape)
else:
tile = np.full(shape_t, np.nan, dtype='<f')
return tile
return load_tile_data
class agilentMosaicTiles(DataObject):
"""
UNSTABLE API
This class provides an array of load_tile_data() closures to allow lazy tile-by-tile
file loading by consumers.
The API is not considered stable at this time, so if you wish to load
mosaic files with a stable interface, use agilentMosaic as in previous
versions.
"""
def __init__(self, filename, MAT=False):
super().__init__()
p = check_files(filename, [".dmt", ".dmd"])
self.MAT = MAT
self._get_dmt_info(p)
self._get_tiles(p)
self.wavenumbers = self.info['wavenumbers']
self.width = self.tiles.shape[0] * self.info['fpasize']
self.height = self.tiles.shape[1] * self.info['fpasize']
self.filename = dmt_path(p).as_posix()
self.acqdate = self.info['Time Stamp']
self.vis = get_visible_images(p)
def _get_dmt_info(self, p_in):
# .dmt is always lowercase
p = dmt_path(p_in)
with p.open(mode='rb') as f:
self.info.update(_get_wavenumbers(f))
self.info.update(_get_params(f))
def _get_tiles(self, p_in):
# Determine mosiac dimensions by counting .dmd files
xtiles = sum(1 for _ in
p_in.parent.glob(p_in.stem + "_[0-9][0-9][0-9][0-9]_0000.dmd"))
ytiles = sum(1 for _ in
p_in.parent.glob(p_in.stem + "_0000_[0-9][0-9][0-9][0-9].dmd"))
# _0000_0000.dmd primary file
p = p_in.parent.joinpath(p_in.stem + "_0000_0000.dmd")
Npts = self.info['Npts']
fpasize = self.info['fpasize'] = _fpa_size(p.stat().st_size / 4, Npts)
if DEBUG:
print("{0} x {1} tiles found".format(xtiles, ytiles))
print("FPA size is {}".format(fpasize))
print("Total dimensions are {0} x {1} or {2} spectra.".format(
xtiles*fpasize, ytiles*fpasize, xtiles*ytiles*fpasize**2))
tiles = np.zeros((xtiles, ytiles), dtype=object)
for (x, y) in np.ndindex(tiles.shape):
p_dmd = p_in.parent.joinpath(p_in.stem + "_{0:04d}_{1:04d}.dmd".format(x,y))
tiles[x, y] = make_tile_loader(p_dmd, Npts, fpasize)
self.tiles = tiles
class agilentMosaic(agilentMosaicTiles):
"""
Extracts the spectra from an Agilent mosaic FPA image.
Attributes beyond .info and .data are provided for consistency with MATLAB code
Args:
filename (str): full path to .dmt file
MAT (bool): Output array using image coordinates (matplotlib/MATLAB)
dtype (np.dtype): Set dtype of output array (float32 or float64)
Attributes:
info (dict): Dictionary of acquisition information
data (:obj:`ndarray`): 3-dimensional array (height x width x wavenumbers)
wavenumbers (list): Wavenumbers in order of .data array
width (int): Width of mosaic in pixels (rows)
height (int): Width of mosaic in pixels (columns)
filename (str): Full path to .dmt file
acqdate (str): Date and time of acquisition
Based on agilent-file-formats MATLAB code by Alex Henderson:
https://bitbucket.org/AlexHenderson/agilent-file-formats
"""
def __init__(self, filename, MAT=False, dtype=np.float32):
super().__init__(filename, MAT)
self.dtype = dtype
self._get_data()
def _get_data(self):
xtiles = self.tiles.shape[0]
ytiles = self.tiles.shape[1]
Npts = self.info['Npts']
fpasize = self.info['fpasize']
# Allocate array
# (rows, columns, wavenumbers)
data = np.zeros((ytiles*fpasize, xtiles*fpasize, Npts),
dtype=self.dtype)
if DEBUG:
print("self.tiles: ", self.tiles.shape)
print("self.data: ", data.shape)
for (x, y) in np.ndindex(self.tiles.shape):
tile = self.tiles[x, y]()
if self.MAT:
# Rotate and flip tile to match matplotlib/MATLAB image coordinates
tile = np.flipud(tile)
data[y*fpasize:(y+1)*fpasize, x*fpasize:(x+1)*fpasize, :] = tile
else:
# Tile data is in normal cartesian coordinates
# but tile numbering (000x_000y)
# is left-to-right, top-to-bottom (image coordinates)
data[(ytiles-y-1)*fpasize:(ytiles-y)*fpasize, (x)*fpasize:(x+1)*fpasize, :] = tile
self.data = data
class agilentImageIFG(DataObject):
"""
Extracts the interferograms from an Agilent single tile FPA image.
Args:
filename (str): full path to .seq file
MAT (bool): Output array using image coordinates (matplotlib/MATLAB)
Attributes:
info (dict): Dictionary of acquisition information
data (:obj:`ndarray`): 3-dimensional array (height x width x wavenumbers)
filename (str): Full path to .bsp file
"""
def __init__(self, filename, MAT=False):
super().__init__()
p = check_files(filename, [".seq", ".bsp"])
self.MAT = MAT
self._get_bsp_info(p)
self._get_seq(p)
self.filename = bsp_path(p).as_posix()
def _get_bsp_info(self, p_in):
p = bsp_path(p_in)
with p.open(mode='rb') as f:
self.info.update(_get_wavenumbers(f)) # All but 'wavenumbers' will be replaced in get_ifg_params
self.info.update(_get_ifg_params(f))
self.info.update(_get_params(f))
def _get_seq(self, p_in):
p = p_in.with_suffix(".seq")
with p.open(mode='rb') as f:
data = np.fromfile(f, dtype='<f')
fpasize = _fpa_size(data.size, self.info['Npts'])
data = _reshape_tile(data, (self.info['Npts'], fpasize, fpasize))
if self.MAT:
# Rotate and flip tile to match matplotlib/MATLAB image coordinates
data = np.flipud(data)
self.data = data
if DEBUG:
print("FPA Size is {}".format(fpasize))
class agilentMosaicIFGTiles(DataObject):
"""
UNSTABLE API
This class provides an array of load_tile_data() closures to allow lazy tile-by-tile
file loading by consumers.
The API is not considered stable at this time, so if you wish to load
mosaic files with a stable interface, use agilentMosaicIFG as in previous
versions.
"""
def __init__(self, filename, MAT=False):
super().__init__()
p = check_files(filename, [".dmt", ".drd"])
self.MAT = MAT
self._get_dmt_info(p)
self._get_tiles(p)
self.filename = dmt_path(p).as_posix()
def _get_dmt_info(self, p_in):
# .dmt is always lowercase
p = dmt_path(p_in)
with p.open(mode='rb') as f:
self.info.update(_get_ifg_params(f))
self.info.update(_get_params(f))
def _get_tiles(self, p_in):
# Determine mosiac dimensions by counting .drd files
xtiles = sum(1 for _ in
p_in.parent.glob(p_in.stem + "_[0-9][0-9][0-9][0-9]_0000.drd"))
ytiles = sum(1 for _ in
p_in.parent.glob(p_in.stem + "_0000_[0-9][0-9][0-9][0-9].drd"))
# _0000_0000.drd primary file
p = p_in.parent.joinpath(p_in.stem + "_0000_0000.drd")
Npts = self.info['Npts']
fpasize = self.info['fpasize'] = _fpa_size(p.stat().st_size / 4, Npts)
if DEBUG:
print("{0} x {1} tiles found".format(xtiles, ytiles))
print("FPA size is {}".format(fpasize))
print("Total dimensions are {0} x {1} or {2} spectra.".format(
xtiles*fpasize, ytiles*fpasize, xtiles*ytiles*fpasize**2))
tiles = np.zeros((xtiles, ytiles), dtype=object)
for (x, y) in np.ndindex(tiles.shape):
p_drd = p_in.parent.joinpath(p_in.stem + "_{0:04d}_{1:04d}.drd".format(x,y))
tiles[x, y] = make_tile_loader(p_drd, Npts, fpasize)
self.tiles = tiles
class agilentMosaicIFG(agilentMosaicIFGTiles):
"""
Extracts the interferograms from an Agilent mosaic FPA image.
Args:
filename (str): full path to .dmt file
MAT (bool): Output array using image coordinates (matplotlib/MATLAB)
dtype (np.dtype): Set dtype of output array (float32 or float64))
Attributes:
info (dict): Dictionary of acquisition information
data (:obj:`ndarray`): 3-dimensional array (height x width x wavenumbers)
filename (str): Full path to .dmt file
"""
def __init__(self, filename, MAT=False, dtype=np.float32):
super().__init__(filename, MAT)
self.dtype = dtype
self._get_data()
def _get_data(self):
xtiles = self.tiles.shape[0]
ytiles = self.tiles.shape[1]
Npts = self.info['Npts']
fpasize = self.info['fpasize']
# Allocate array
# (rows, columns, wavenumbers)
data = np.zeros((ytiles*fpasize, xtiles*fpasize, Npts),
dtype=self.dtype)
if DEBUG:
print("self.tiles: ", self.tiles.shape)
print("self.data: ", data.shape)
for (x, y) in np.ndindex(self.tiles.shape):
tile = self.tiles[x, y]()
if self.MAT:
# Rotate and flip tile to match matplotlib/MATLAB image coordinates
tile = np.flipud(tile)
data[y*fpasize:(y+1)*fpasize, x*fpasize:(x+1)*fpasize, :] = tile
else:
# Tile data is in normal cartesian coordinates
# but tile numbering (000x_000y)
# is left-to-right, top-to-bottom (image coordinates)
data[(ytiles-y-1)*fpasize:(ytiles-y)*fpasize, (x)*fpasize:(x+1)*fpasize, :] = tile
self.data = data
|