1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
|
User Guide
==========
.. contents::
:local:
TL;DR
-----
This sums most of what you can do with :mod:`aioinflux`:
.. code:: python
import asyncio
from aioinflux import InfluxDBClient
point = {
'time': '2009-11-10T23:00:00Z',
'measurement': 'cpu_load_short',
'tags': {'host': 'server01',
'region': 'us-west'},
'fields': {'value': 0.64}
}
async def main():
async with InfluxDBClient(db='testdb') as client:
await client.create_database(db='testdb')
await client.write(point)
resp = await client.query('SELECT value FROM cpu_load_short')
print(resp)
asyncio.get_event_loop().run_until_complete(main())
Client modes
------------
Despite the library's name, |client| can also run in non-async
mode (a.k.a ``blocking``) mode. It can be useful for debugging and exploratory
data analysis.
The running mode for can be switched on-the-fly by changing the ``mode`` attribute:
.. code:: python
client = InfluxDBClient(mode='blocking')
client.mode = 'async'
The ``blocking`` mode is implemented through a decorator that automatically runs coroutines on
the event loop as soon as they are generated.
Usage is almost the same as in the ``async`` mode, but without the need of using ``await`` and
being able to run from outside of a coroutine function:
.. code:: python
client = InfluxDBClient(db='testdb', mode='blocking')
client.ping()
client.write(point)
client.query('SELECT value FROM cpu_load_short')
.. note::
The need for the ``blocking`` mode has been somewhat supplanted
by the new async REPL available with the release of IPython 7.0.
See `this blog post <https://blog.jupyter.org/ipython-7-0-async-repl-a35ce050f7f7>`__ for details.
If you are having issues running ``blocking`` mode with recent Python/IPython versions,
see `this issue <https://github.com/gusutabopb/aioinflux/issues/17>`__ for other possible workarounds.
Writing data
------------
To write data to InfluxDB, use |client|'s
|write| method.
Successful writes will return ``True``. In case some error occurs :class:`~aioinflux.client.InfluxDBWriteError`
exception will be raised.
Input data to |write| can be:
1. A mapping (e.g. ``dict``) containing the keys: ``measurement``, ``time``, ``tags``, ``fields``
2. A :class:`pandas.DataFrame` with a |datetimeindex|
3. A user defined class decorated w/ |lineprotocol|
(**recommended**, see :ref:`below <Writing user-defined class objects>`)
4. A string (``str`` or ``bytes``) properly formatted in InfluxDB's line protocol
5. An iterable of one of the above
Input data in formats 1-3 are serialized into the `line protocol`_ before being written to InfluxDB.
``str`` or ``bytes`` are assumed to already be in line protocol format and are inserted into InfluxDB as they are.
All functionality regarding JSON parsing (InfluxDB's only output format) and serialization to line protocol
(InfluxDB's only input format) is located in the :mod:`~aioinflux.serialization` subpackage.
Beware that serialization is not highly optimized (C extensions / cythonization PRs are welcome!) and may become
a bottleneck depending on your application's performance requirements.
It is, however, reasonably (3-10x) `faster`_ than InfluxDB's `official Python client`_.
.. _`official Python client`: https://github.com/influxdata/influxdb-python
.. _`line protocol`: https://docs.influxdata.com/influxdb/latest/write_protocols/line_protocol_reference/
.. _`faster`: https://gist.github.com/gusutabopb/42550f0f07628ba61b0ed6322f02855b
Writing dictionary-like objects
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. warning::
This is the same format as the one used by InfluxDB's `official Python client`_ and is implemented
in Aioinflux for compatibility purposes only.
Using dictionaries to write data to InfluxDB is slower and more error-prone than the other methods
provided by Aioinflux and therefore **discouraged**.
Aioinflux accepts any dictionary-like object (mapping) as input.
The dictionary must contain the following keys:
1) **measurement**: Optional. Must be a string-like object. If
omitted, must be specified when calling |write|
by passing a ``measurement`` argument.
2) **time**: Optional. The value can be |datetime|,
date-like string (e.g., ``2017-01-01``, ``2009-11-10T23:00:00Z``) or
anything else that can be parsed by :class:`pandas.Timestamp`.
See :ref:`Pandas documentation <pandas:timeseries>` for details.
If Pandas is not available, |ciso8601|_ is used instead for date-like string parsing.
3) **tags**: Optional. This must contain another mapping of field
names and values. Both tag keys and values should be strings.
4) **fields**: Mandatory. This must contain another mapping of field
names and values. Field keys should be strings. Field values can be
``float``, ``int``, ``str``, ``bool`` or ``None`` or any its subclasses.
Attempting to use Numpy types will cause errors as ``np.int64``, ``np.float64``, etc are not
subclasses of Python's built-in numeric types.
Use dataframes for writing data using Numpy types.
.. |ciso8601| replace:: ``ciso8601``
.. _ciso8601: https://github.com/closeio/ciso8601/
Any keys other then the above will be ignored when writing data to
InfluxDB.
A typical dictionary-like point would look something like the following:
.. code:: python
{'time': '2009-11-10T23:00:00Z',
'measurement': 'cpu_load_short',
'tags': {'host': 'server01', 'region': 'us-west'},
'fields': {'value1': 0.64, 'value2': True, 'value3': 10}}
.. note:: **Timestamps and timezones**
Working with timezones in computing tends to be quite messy.
To avoid such problems, the `broadly agreed`_ upon idea is to store
timestamps in UTC. This is how both InfluxDB and Pandas treat timestamps internally.
Pandas and many other libraries also assume all input timestamps are in UTC unless otherwise
explicitly noted. Aioinflux does the same and assumes any timezone-unaware |datetime| object
or datetime-like strings is in UTC.
Aioinflux does not raise any warnings when timezone-unaware input is passed
and silently assumes it to be in UTC.
.. _`broadly agreed`: http://lucumr.pocoo.org/2011/7/15/eppur-si-muove/
Writing DataFrames
^^^^^^^^^^^^^^^^^^
Aioinflux also accepts Pandas dataframes as input. The only requirements
for the dataframe is that the index **must** be of type
|datetimeindex|. Also, any column whose ``dtype`` is ``object`` will
be converted to a string representation.
A typical dataframe input should look something like the following:
.. code:: text
LUY BEM AJW tag
2017-06-24 08:45:17.929097+00:00 2.545409 5.173134 5.532397 B
2017-06-24 10:15:17.929097+00:00 -0.306673 -1.132941 -2.130625 E
2017-06-24 11:45:17.929097+00:00 0.894738 -0.561979 -1.487940 B
2017-06-24 13:15:17.929097+00:00 -1.799512 -1.722805 -2.308823 D
2017-06-24 14:45:17.929097+00:00 0.390137 -0.016709 -0.667895 E
The measurement name must be specified with the ``measurement`` argument
when calling |write|.
Columns that should be treated as tags must be specified by passing a sequence as the ``tag_columns`` argument.
Additional tags (not present in the actual dataframe) can also be passed using arbitrary keyword arguments.
**Example:**
.. code:: python
client = InfluxDBClient(db='testdb', mode='blocking')
client.write(df, measurement='prices', tag_columns=['tag'], asset_class='equities')
In the example above, ``df`` is the dataframe we are trying to write to
InfluxDB and ``measurement`` is the measurement we are writing to.
``tag_columns`` is in an optional iterable telling which of the
dataframe columns should be parsed as tag values. If ``tag_columns`` is
not explicitly passed, all columns in the dataframe whose dtype is not
|datetimeindex| will be treated as InfluxDB field values.
Any other keyword arguments passed to |write| are
treated as extra tags which will be attached to the data being written
to InfluxDB. Any string which is a valid `InfluxDB identifier`_ and
valid `Python identifier`_ can be used as an extra tag key (with the
exception of the strings ``data``, ``measurement`` and ``tag_columns``).
See :ref:`API reference <client interface>` for details.
.. _`InfluxDB identifier`: https://docs.influxdata.com/influxdb/latest/query_language/spec/#identifiers
.. _`Python identifier`: https://docs.python.org/3/reference/lexical_analysis.html#identifiers
Writing user-defined class objects
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. versionchanged:: 0.5.0
Aioinflux can add write any arbitrary user-defined class to InfluxDB through the use of the
|lineprotocol| decorator. This decorator monkey-patches an
existing class and adds a ``to_lineprotocol`` method, which is used internally by Aioinflux to serialize
the class data into a InfluxDB-compatible format. In order to generate ``to_lineprotocol``, a typed schema
must be defined using `type hints`_ in the form of type annotations or a schema dictionary.
This is the fastest and least error-prone method of writing data into InfluxDB provided by Aioinflux.
.. _`type hints`: https://docs.python.org/3/library/typing.html
We recommend using |lineprotocol| with :py:class:`~typing.NamedTuple`:
.. code:: python
from aioinflux import *
from typing import NamedTuple
@lineprotocol
class Trade(NamedTuple):
timestamp: TIMEINT
instrument: TAGENUM
source: TAG
side: TAG
price: FLOAT
size: INT
trade_id: STR
Alternatively, the functional form of :py:func:`~collections.namedtuple` can also be used:
.. code:: python
from collections import namedtuple
schema = dict(
timestamp=TIMEINT,
instrument=TAG,
source=TAG,
side=TAG,
price=FLOAT,
size=INT,
trade_id=STR,
)
# Create class
Trade = namedtuple('Trade', schema.keys())
# Monkey-patch existing class and add ``to_lineprotocol``
Trade = lineprotocol(Trade, schema=schema)
Dataclasses (or any other user-defined class) can be used as well:
.. code:: python
from dataclasses import dataclass
@lineprotocol
@dataclass
class Trade:
timestamp: TIMEINT
instrument: TAGENUM
source: TAG
side: TAG
price: FLOAT
size: INT
trade_id: STR
If you want to preserve type annotations for another use,
you can pass your serialization schema as a dictionary as well:
.. code:: python
@lineprotocol(schema=dict(timestamp=TIMEINT, value=FLOAT))
@dataclass
class MyTypedClass:
timestamp: int
value: float
print(MyTypedClass.__annotations__)
# {'timestamp': <class 'int'>, 'value': <class 'float'>}
MyTypedClass(1547710904202826000, 2.1).to_lineprotocol()
# b'MyTypedClass value=2.1 1547710904202826000'
The modified class will have a dynamically generated ``to_lineprotocol`` method which
generates a line protocol representation of the data contained by the object:
.. code:: python
trade = Trade(
timestamp=1540184368785116000,
instrument='AAPL',
source='NASDAQ',
side='BUY',
price=219.23,
size=100,
trade_id='34a1e085-3122-429c-9662-7ce82039d287'
)
trade.to_lineprotocol()
# b'Trade,instrument=AAPL,source=NASDAQ,side=BUY price=219.23,size=100i,trade_id="34a1e085-3122-429c-9662-7ce82039d287" 1540184368785116000'
Calling ``to_lineprotocol`` by the end-user is not necessary but may be useful for debugging.
``to_lineprotocol`` is automatically used by |write| when present.
.. code:: python
client = InfluxDBClient()
await client.write(trade) # True
User-defined class schema/type annotations
""""""""""""""""""""""""""""""""""""""""""
In Aioinflux, InfluxDB types (and derived types) are represented by :py:class:`~typing.TypeVar`
defined in :mod:`aioinflux.serialization.usertype` module.
All schema types (type annotations) **must** be one of those types.
The types available are based on the native types of InfluxDB
(see the `InfluxDB docs <https://docs.influxdata.com/influxdb/v1.6/write_protocols/line_protocol_reference/#data-types>`__ for
details), with some extra types to help the serialization to line protocol and/or allow more flexible usage
(such as the use of :py:class:`~enum.Enum` objects).
.. list-table::
:header-rows: 1
:widths: 10 30
:align: center
* - Type
- Description
* - ``MEASUREMENT``
- Optional. If missing, the measurement becomes the class name
* - ``TIMEINT``
- Timestamp is a nanosecond UNIX timestamp
* - ``TIMESTR``
- Timestamp is a datetime string (somewhat compliant to ISO 8601)
* - ``TIMEDT``
- Timestamp is a |datetime| (or subclasses such as :class:`pandas.Timestamp`)
* - ``TAG``
- Treats field as an InfluxDB tag
* - ``TAGENUM``
- Same as ``TAG`` but allows the use of :py:class:`~enum.Enum`
* - ``BOOL``
- Boolean field
* - ``INT``
- Integer field
* - ``FLOAT``
- Float field
* - ``STR``
- String field
* - ``ENUM``
- Same as ``STR`` but allows the use of :py:class:`~enum.Enum`
``TAG*`` types are optional. One and only one ``TIME*`` type must present. At least ONE field type be present.
``@lineprotocol`` options
"""""""""""""""""""""""""
The |lineprotocol| function/decorator provides some options to
customize how object serialization is performed.
See the :ref:`API reference <user-defined classes>` for details.
Performance
"""""""""""
Serialization using |lineprotocol| is about 3x faster
than dictionary-like objects (or about 10x faster than the `official Python client`_).
See this `notebook <https://github.com/gusutabopb/aioinflux/tree/master/notebooks/datapoint_benchmark.ipynb>`__
for a simple benchmark.
Beware that setting ``rm_none=True`` can have substantial performance impact especially when
the number of fields/tags is very large (20+).
Querying data
-------------
Querying data is as simple as passing an InfluxDB query string to |query|:
.. code:: python
await client.query('SELECT myfield FROM mymeasurement')
By default, this returns JSON data:
.. code:: python
{'results': [{'series': [{'columns': ['time', 'Price', 'Volume'],
'name': 'mymeasurement',
'values': [[1491963424224703000, 5783, 100],
[1491963424375146000, 5783, 200],
[1491963428374895000, 5783, 100],
[1491963429645478000, 5783, 1100],
[1491963429655289000, 5783, 100],
[1491963437084443000, 5783, 100],
[1491963442274656000, 5783, 900],
[1491963442274657000, 5782, 5500],
[1491963442274658000, 5781, 3200],
[1491963442314710000, 5782, 100]]}],
'statement_id': 0}]}
See `InfluxDB official docs <https://docs.influxdata.com/influxdb/latest/guides/querying_data/#querying-data-using-the-http-api>`_
for more on the InfluxDB's HTTP API specifics.
Output formats
^^^^^^^^^^^^^^
When using, |query| data can return data in one of the following formats:
1) ``json``: Default. Returns a dictionary representation of the JSON response received from InfluxDB.
2) ``dataframe``: Parses the result into a Pandas dataframe(s).
See :ref:`Retrieving DataFrames` for details.
The output format for can be switched on-the-fly by changing the ``output`` attribute:
.. code:: python
client = InfluxDBClient(output='dataframe')
client.mode = 'json'
Beware that when passing ``chunked=True``, the result type will be an async generator.
See :ref:`Chunked responses` for details.
Retrieving DataFrames
^^^^^^^^^^^^^^^^^^^^^
When the client is in ``dataframe`` mode, |query|
will usually return a :class:`pandas.DataFrame`:
.. code:: text
Price Volume
2017-04-12 02:17:04.224703+00:00 5783 100
2017-04-12 02:17:04.375146+00:00 5783 200
2017-04-12 02:17:08.374895+00:00 5783 100
2017-04-12 02:17:09.645478+00:00 5783 1100
2017-04-12 02:17:09.655289+00:00 5783 100
2017-04-12 02:17:17.084443+00:00 5783 100
2017-04-12 02:17:22.274656+00:00 5783 900
2017-04-12 02:17:22.274657+00:00 5782 5500
2017-04-12 02:17:22.274658+00:00 5781 3200
2017-04-12 02:17:22.314710+00:00 5782 100
.. note::
On multi-statement queries and/or statements that return multiple InfluxDB series
(such as a ``GROUP by "tag"`` query), a list of dictionaries of dataframes will be returned.
Aioinflux generates a dataframe for each series contained in the JSON returned by InfluxDB.
See this `Github issue <https://github.com/gusutabopb/aioinflux/issues/19>`__ for further discussion.
When generating dataframes, InfluxDB types are mapped to the following Numpy/Pandas dtypes:
.. list-table::
:header-rows: 1
:align: center
* - InfluxDB type
- Dataframe column ``dtype``
* - Float
- ``float64``
* - Integer
- ``int64``
* - String
- ``object``
* - Boolean
- ``bool``
* - Timestamp
- ``datetime64``
Chunked responses
^^^^^^^^^^^^^^^^^
Aioinflux supports InfluxDB chunked queries. Passing ``chunked=True`` when calling
|query|, returns an :py:class:`~collections.abc.AsyncGenerator` object,
which can asynchronously iterated.
Using chunked requests allows response processing to be partially done before
the full response is retrieved, reducing overall query time
(at least in theory - your mileage may vary).
.. code:: python
chunks = await client.query("SELECT * FROM mymeasurement", chunked=True)
async for chunk in chunks:
# do something
await process_chunk(...)
When using chunked responses with ``dataframe`` output, the following construct may be useful:
.. code:: python
cursor = await client.query("SELECT * FROM mymeasurement", chunked=True)
df = pd.concat([i async for i in cursor])
If you need to keep track of when the chunks are being returned,
consider setting up a logging handler at ``DEBUG`` level (see :ref:`Debugging` for details).
See the `InfluxDB official docs <https://docs.influxdata.com/influxdb/v1.7/guides/querying_data/#chunking>`__
for more on chunked responses.
Iterating responses
^^^^^^^^^^^^^^^^^^^
By default, |query| returns a parsed JSON response from InfluxDB.
In order to easily iterate over that JSON response point by point, Aioinflux
provides the |iterpoints| function, which returns a generator object:
.. code:: python
from aioinflux import iterpoints
r = client.query('SELECT * from h2o_quality LIMIT 10')
for i in iterpoints(r):
print(i)
.. code:: text
[1439856000000000000, 41, 'coyote_creek', '1']
[1439856000000000000, 99, 'santa_monica', '2']
[1439856360000000000, 11, 'coyote_creek', '3']
[1439856360000000000, 56, 'santa_monica', '2']
[1439856720000000000, 65, 'santa_monica', '3']
|iterpoints| can also be used with chunked responses:
.. code:: python
chunks = await client.query('SELECT * from h2o_quality', chunked=True)
async for chunk in chunks:
for point in iterpoints(chunk):
# do something
Using custom parsers
""""""""""""""""""""
By default, the generator returned by |iterpoints|
yields a plain list of values without doing any expensive parsing.
However, in case a specific format is needed, an optional ``parser`` argument can be passed.
``parser`` is a function/callable that takes data point values
and, optionally, a ``meta`` parameter containing which takes a
dictionary containing all or a subset of the following:
``{'columns', 'name', 'tags', 'statement_id'}``.
- Example using a regular function and ``meta``
.. code:: python
r = await client.query('SELECT * from h2o_quality LIMIT 5')
for i in iterpoints(r, lambda *x, meta: dict(zip(meta['columns'], x))):
print(i)
.. code:: text
{'time': 1439856000000000000, 'index': 41, 'location': 'coyote_creek', 'randtag': '1'}
{'time': 1439856000000000000, 'index': 99, 'location': 'santa_monica', 'randtag': '2'}
{'time': 1439856360000000000, 'index': 11, 'location': 'coyote_creek', 'randtag': '3'}
{'time': 1439856360000000000, 'index': 56, 'location': 'santa_monica', 'randtag': '2'}
{'time': 1439856720000000000, 'index': 65, 'location': 'santa_monica', 'randtag': '3'}
- Example using a :py:func:`~collections.namedtuple`
.. code:: python
from collections import namedtuple
nt = namedtuple('MyPoint', ['time', 'index', 'location', 'randtag'])
r = await client.query('SELECT * from h2o_quality LIMIT 5')
for i in iterpoints(r, parser=nt):
print(i)
.. code:: text
MyPoint(time=1439856000000000000, index=41, location='coyote_creek', randtag='1')
MyPoint(time=1439856000000000000, index=99, location='santa_monica', randtag='2')
MyPoint(time=1439856360000000000, index=11, location='coyote_creek', randtag='3')
MyPoint(time=1439856360000000000, index=56, location='santa_monica', randtag='2')
MyPoint(time=1439856720000000000, index=65, location='santa_monica', randtag='3')
Caching query results
^^^^^^^^^^^^^^^^^^^^^
.. versionadded:: v0.7.0
Aioinflux provides an optional caching layer on top of InfluxDB, based on `Redis`_ and :mod:`aioredis`.
The caching functionality is designed for highly iterative/repetitive workloads
(i.e.: machine learning / quantitative finance model tuning)
that constantly query InfluxDB for the same historical data repeatedly.
By saving query results in memory locally, load on your InfluxDB instance can be greatly reduced.
In order to enable/use caching functionality:
1. Install the necessary optional dependencies: ``pip install aioinflux[cache]``
2. Pass Redis host information when initializing :class:`.InfluxDBClient` with the ``redis_opts`` argument.
``redis_opts`` takes a dictionary with keyword arguments used when calling :func:`aioredis.create_redis`.
3. When using :meth:`~.InfluxDBClient.query` , set ``use_cache`` to ``True``.
Even when Redis is properly configured, cache will be ignored unless specified on a per-query basis.
Optionally, to control when the cache expires, use the ``cache_expiry`` argument of :class:`.InfluxDBClient`.
You can also just simply use Redis CLI to clear the cache:
.. code:: bash
redis-cli -n <db> flushdb
In order to debug whether or not cache is being used or being hit/miss, enable the ``aioinflux`` logger
and set it to ``DEBUG`` level. See :ref:`Debugging` for more details.
.. _Redis: https://redis.io/
Other functionality
-------------------
Authentication
^^^^^^^^^^^^^^
Aioinflux supports basic HTTP authentication provided by :py:class:`aiohttp.BasicAuth`.
Simply pass ``username`` and ``password`` when instantiating |client|:
.. code:: python
client = InfluxDBClient(username='user', password='pass)
Unix domain sockets
^^^^^^^^^^^^^^^^^^^
If your InfluxDB server uses UNIX domain sockets you can use ``unix_socket``
when instantiating |client|:
.. code:: python
client = InfluxDBClient(unix_socket='/path/to/socket')
See |unix_connector|_ for details.
.. |unix_connector| replace:: ``aiohttp.UnixConnector``
.. _unix_connector: https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.UnixConnector
Custom timeouts
^^^^^^^^^^^^^^^
.. todo:: TODO
Other ``aiohttp`` functionality
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. todo:: Explain how to customize :class:`aiohttp.ClientSession` creation
HTTPS/SSL
^^^^^^^^^
Aioinflux/InfluxDB uses HTTP by default, but HTTPS can be used by passing ``ssl=True``
when instantiating |client|.
If you are acessing your your InfluxDB instance over the public internet, setting up HTTPS is
`strongly recommended <https://docs.influxdata.com/influxdb/v1.7/administration/https_setup/>`__.
.. code:: python
client = InfluxDBClient(host='my.host.io', ssl=True)
Database selection
^^^^^^^^^^^^^^^^^^
After the instantiation of the |client| object, database
can be switched by changing the ``db`` attribute:
.. code:: python
client = InfluxDBClient(db='db1')
client.db = 'db2'
Beware that differently from some NoSQL databases (such as MongoDB),
InfluxDB requires that a databases is explicitly created (by using the
|CREATE_DATABASE|_ query) before doing any operations on it.
.. |CREATE_DATABASE| replace:: ``CREATE DATABASE``
.. _`CREATE_DATABASE`: https://docs.influxdata.com/influxdb/latest/query_language/database_management/#create-database
Debugging
^^^^^^^^^
If you are having problems while using Aioinflux, enabling logging might be useful.
Below is a simple way to setup logging from your application:
.. code:: python
import logging
logging.basicConfig()
logging.getLogger('aioinflux').setLevel(logging.DEBUG)
For further information about logging, please refer to the
`official documentation <https://docs.python.org/3/library/logging.html>`__.
.. |lineprotocol| replace:: :func:`~aioinflux.serialization.usertype.lineprotocol`
.. |client| replace:: :class:`~aioinflux.client.InfluxDBClient`
.. |write| replace:: :meth:`~aioinflux.client.InfluxDBClient.write`
.. |query| replace:: :meth:`~aioinflux.client.InfluxDBClient.query`
.. |iterpoints| replace:: :func:`~aioinflux.iterutils.iterpoints`
.. |datetimeindex| replace:: :class:`~pandas.DatetimeIndex`
.. |datetime| replace:: :py:class:`datetime.datetime`
|