1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
|
########################################################################
# File name: callbacks.py
# This file is part of: aioxmpp
#
# LICENSE
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this program. If not, see
# <http://www.gnu.org/licenses/>.
#
########################################################################
"""
:mod:`~aioxmpp.callbacks` -- Synchronous and asynchronous callbacks
###################################################################
This module provides facilities for objects to provide signals to which other
objects can connect.
Descriptor vs. ad-hoc
=====================
Descriptors can be used as class attributes and will create ad-hoc signals
dynamically for each instance. They are the most commonly used:
.. code-block:: python
class Emitter:
on_event = callbacks.Signal()
def handler():
pass
emitter1 = Emitter()
emitter2 = Emitter()
emitter1.on_event.connect(handler)
emitter1.on_event() # calls `handler`
emitter2.on_event() # does not call `handler`
# the actual signals are distinct
assert emitter1.on_event is not emitter2.on_event
Ad-hoc signals are useful for testing and are the type of which the actual
fields are.
Signal overview
===============
.. autosummary::
Signal
SyncSignal
AdHocSignal
SyncAdHocSignal
Utilities
---------
.. autofunction:: first_signal
Signal descriptors
------------------
These descriptors can be used on classes to have attributes which are signals:
.. autoclass:: Signal
.. autoclass:: SyncSignal
Signal implementations (ad-hoc signals)
---------------------------------------
Whenever accessing an attribute using the :class:`Signal` or
:class:`SyncSignal` descriptors, an object of one of the following classes is
returned. This is where the behaviour of the signals is specified.
.. autoclass:: AdHocSignal
.. autoclass:: SyncAdHocSignal
Filters
=======
.. autoclass:: Filter
"""
import abc
import asyncio
import collections
import contextlib
import functools
import logging
import types
import weakref
logger = logging.getLogger(__name__)
def log_spawned(logger, fut):
try:
result = fut.result()
except asyncio.CancelledError:
logger.debug("spawned task was cancelled")
except: # NOQA
logger.warning("spawned task raised exception", exc_info=True)
else:
if result is not None:
logger.info("value returned by spawned task was ignored: %r",
result)
class TagListener:
def __init__(self, ondata, onerror=None):
self._ondata = ondata
self._onerror = onerror
def data(self, data):
return self._ondata(data)
def error(self, exc):
if self._onerror is not None:
return self._onerror(exc)
def is_valid(self):
return True
class AsyncTagListener(TagListener):
def __init__(self, ondata, onerror=None, *, loop=None):
super().__init__(ondata, onerror)
self._loop = loop or asyncio.get_event_loop()
def data(self, data):
self._loop.call_soon(self._ondata, data)
def error(self, exc):
if self._onerror is not None:
self._loop.call_soon(self._onerror, exc)
class OneshotTagListener(TagListener):
def __init__(self, ondata, onerror=None, **kwargs):
super().__init__(ondata, onerror=onerror, **kwargs)
self._cancelled = False
def data(self, data):
super().data(data)
return True
def error(self, exc):
super().error(exc)
return True
def cancel(self):
self._cancelled = True
def is_valid(self):
return not self._cancelled and super().is_valid()
class OneshotAsyncTagListener(OneshotTagListener, AsyncTagListener):
pass
class FutureListener:
def __init__(self, fut):
self.fut = fut
def data(self, data):
try:
self.fut.set_result(data)
except asyncio.InvalidStateError:
pass
return True
def error(self, exc):
try:
self.fut.set_exception(exc)
except asyncio.InvalidStateError:
pass
return True
def is_valid(self):
return not self.fut.done()
class TagDispatcher:
def __init__(self):
self._listeners = {}
def add_callback(self, tag, fn):
return self.add_listener(tag, TagListener(fn))
def add_callback_async(self, tag, fn, *, loop=None):
return self.add_listener(
tag,
AsyncTagListener(fn, loop=loop)
)
def add_future(self, tag, fut):
return self.add_listener(
tag,
FutureListener(fut)
)
def add_listener(self, tag, listener):
try:
existing = self._listeners[tag]
if not existing.is_valid():
raise KeyError()
except KeyError:
self._listeners[tag] = listener
else:
raise ValueError("only one listener is allowed per tag")
def unicast(self, tag, data):
cb = self._listeners[tag]
if not cb.is_valid():
del self._listeners[tag]
self._listeners[tag]
if cb.data(data):
del self._listeners[tag]
def unicast_error(self, tag, exc):
cb = self._listeners[tag]
if not cb.is_valid():
del self._listeners[tag]
self._listeners[tag]
if cb.error(exc):
del self._listeners[tag]
def remove_listener(self, tag):
del self._listeners[tag]
def broadcast_error(self, exc):
for tag, listener in list(self._listeners.items()):
if listener.is_valid() and listener.error(exc):
del self._listeners[tag]
def close_all(self, exc):
self.broadcast_error(exc)
self._listeners.clear()
class AbstractAdHocSignal:
def __init__(self):
super().__init__()
self._connections = collections.OrderedDict()
self.logger = logger
def _connect(self, wrapper):
token = object()
self._connections[token] = wrapper
return token
def disconnect(self, token):
"""
Disconnect the connection identified by `token`. This never raises,
even if an invalid `token` is passed.
"""
try:
del self._connections[token]
except KeyError:
pass
class AdHocSignal(AbstractAdHocSignal):
"""
An ad-hoc signal is a single emitter. This is where callables are connected
to, using the :meth:`connect` method of the :class:`AdHocSignal`.
.. automethod:: fire
.. automethod:: connect
.. automethod:: context_connect
.. automethod:: future
.. attribute:: logger
This may be a :class:`logging.Logger` instance to allow the signal to
log errors and debug events to a specific logger instead of the default
logger (``aioxmpp.callbacks``).
This attribute must not be :data:`None`, and it is initialised to the
default logger on creation of the :class:`AdHocSignal`.
The different ways callables can be connected to an ad-hoc signal are shown
below:
.. attribute:: STRONG
Connections using this mode keep a strong reference to the callable. The
callable is called directly, thus blocking the emission of the signal.
.. attribute:: WEAK
Connections using this mode keep a weak reference to the callable. The
callable is executed directly, thus blocking the emission of the signal.
If the weak reference is dead, it is automatically removed from the
signals connection list. If the callable is a bound method,
:class:`weakref.WeakMethod` is used automatically.
For both :attr:`STRONG` and :attr:`WEAK` holds: if the callable returns a
true value, it is disconnected from the signal.
.. classmethod:: ASYNC_WITH_LOOP(loop)
This mode requires an :mod:`asyncio` event loop as argument. When the
signal is emitted, the callable is not called directly. Instead, it is
enqueued for calling with the event loop using
:meth:`asyncio.BaseEventLoop.call_soon`. If :data:`None` is passed as
`loop`, the loop is obtained from :func:`asyncio.get_event_loop` at
connect time.
A strong reference is held to the callable.
Connections using this mode are never removed automatically from the
signals connection list. You have to use :meth:`disconnect` explicitly.
.. attribute:: AUTO_FUTURE
Instead of a callable, a :class:`asyncio.Future` must be passed when
using this mode.
This mode can only be used for signals which send at most one
positional argument. If no argument is sent, the
:meth:`~asyncio.Future.set_result` method is called with :data:`None`.
If one argument is sent and it is an instance of :class:`Exception`, it
is passed to :meth:`~asyncio.Future.set_exception`. Otherwise, if one
argument is sent, it is passed to
:meth:`~asyncio.Future.set_exception`.
In any case, the future is removed after the next emission of the
signal.
.. classmethod:: SPAWN_WITH_LOOP(loop)
This mode requires an :mod:`asyncio` event loop as argument and a
coroutine to be passed to :meth:`connect`. If :data:`None` is passed as
`loop`, the loop is obtained from :func:`asyncio.get_event_loop` at
connect time.
When the signal is emitted, the coroutine is spawned using
:func:`asyncio.ensure_future` in the given `loop`, with the arguments
passed to the signal.
A strong reference is held to the coroutine.
Connections using this mode are never removed automatically from the
signals connection list. You have to use :meth:`disconnect` explicitly.
If the spawned coroutine returns with an exception or a non-:data:`None`
return value, a message is logged, with the following log levels:
* Return with non-:data:`None` value: :data:`logging.INFO`
* Raises :class:`asyncio.CancelledError`: :data:`logging.DEBUG`
* Raises any other exception: :data:`logging.WARNING`
.. versionadded:: 0.6
.. automethod:: disconnect
"""
@classmethod
def STRONG(cls, f):
if not hasattr(f, "__call__"):
raise TypeError("must be callable, got {!r}".format(f))
return functools.partial(cls._strong_wrapper, f)
@classmethod
def ASYNC_WITH_LOOP(cls, loop):
if loop is None:
loop = asyncio.get_event_loop()
def create_wrapper(f):
if not hasattr(f, "__call__"):
raise TypeError("must be callable, got {!r}".format(f))
return functools.partial(cls._async_wrapper,
f,
loop)
return create_wrapper
@classmethod
def WEAK(cls, f):
if not hasattr(f, "__call__"):
raise TypeError("must be callable, got {!r}".format(f))
if isinstance(f, types.MethodType):
ref = weakref.WeakMethod(f)
else:
ref = weakref.ref(f)
return functools.partial(cls._weakref_wrapper, ref)
@classmethod
def AUTO_FUTURE(cls, f):
def future_wrapper(args, kwargs):
if len(args) > 0:
try:
arg, = args
except ValueError:
raise TypeError("too many arguments") from None
else:
arg = None
if f.done():
return
if isinstance(arg, Exception):
f.set_exception(arg)
else:
f.set_result(arg)
return future_wrapper
@classmethod
def SPAWN_WITH_LOOP(cls, loop):
loop = asyncio.get_event_loop() if loop is None else loop
def spawn(f):
if not asyncio.iscoroutinefunction(f):
raise TypeError("must be coroutine, got {!r}".format(f))
def wrapper(args, kwargs):
task = asyncio.ensure_future(f(*args, **kwargs), loop=loop)
task.add_done_callback(
functools.partial(
log_spawned,
logger,
)
)
return True
return wrapper
return spawn
@staticmethod
def _async_wrapper(f, loop, args, kwargs):
if kwargs:
functools.partial(f, *args, **kwargs)
loop.call_soon(f, *args)
return True
@staticmethod
def _weakref_wrapper(fref, args, kwargs):
f = fref()
if f is None:
return False
return not f(*args, **kwargs)
@staticmethod
def _strong_wrapper(f, args, kwargs):
return not f(*args, **kwargs)
def connect(self, f, mode=None):
"""
Connect an object `f` to the signal. The type the object needs to have
depends on `mode`, but usually it needs to be a callable.
:meth:`connect` returns an opaque token which can be used with
:meth:`disconnect` to disconnect the object from the signal.
The default value for `mode` is :attr:`STRONG`. Any decorator can be
used as argument for `mode` and it is applied to `f`. The result is
stored internally and is what will be called when the signal is being
emitted.
If the result of `mode` returns a false value during emission, the
connection is removed.
.. note::
The return values required by the callable returned by `mode` and
the one required by a callable passed to `f` using the predefined
modes are complementary!
A callable `f` needs to return true to be removed from the
connections, while a callable returned by the `mode` decorator needs
to return false.
Existing modes are listed below.
"""
mode = mode or self.STRONG
self.logger.debug("connecting %r with mode %r", f, mode)
return self._connect(mode(f))
def context_connect(self, f, mode=None):
"""
This returns a *context manager*. When entering the context, `f` is
connected to the :class:`AdHocSignal` using `mode`. When leaving the
context (no matter whether with or without exception), the connection
is disconnected.
.. seealso::
The returned object is an instance of
:class:`SignalConnectionContext`.
"""
return SignalConnectionContext(self, f, mode=mode)
def fire(self, *args, **kwargs):
"""
Emit the signal, calling all connected objects in-line with the given
arguments and in the order they were registered.
:class:`AdHocSignal` provides full isolation with respect to
exceptions. If a connected listener raises an exception, the other
listeners are executed as normal, but the raising listener is removed
from the signal. The exception is logged to :attr:`logger` and *not*
re-raised, so that the caller of the signal is also not affected.
Instead of calling :meth:`fire` explicitly, the ad-hoc signal object
itself can be called, too.
"""
for token, wrapper in list(self._connections.items()):
try:
keep = wrapper(args, kwargs)
except Exception:
self.logger.exception("listener attached to signal raised")
keep = False
if not keep:
del self._connections[token]
def future(self):
"""
Return a :class:`asyncio.Future` which has been :meth:`connect`\\ -ed
using :attr:`AUTO_FUTURE`.
The token returned by :meth:`connect` is not returned; to remove the
future from the signal, just cancel it.
"""
fut = asyncio.Future()
self.connect(fut, self.AUTO_FUTURE)
return fut
__call__ = fire
class SyncAdHocSignal(AbstractAdHocSignal):
"""
A synchronous ad-hoc signal is like :class:`AdHocSignal`, but for
coroutines instead of ordinary callables.
.. automethod:: connect
.. automethod:: context_connect
.. automethod:: fire
.. automethod:: disconnect
"""
def connect(self, coro):
"""
The coroutine `coro` is connected to the signal. The coroutine must
return a true value, unless it wants to be disconnected from the
signal.
.. note::
This is different from the return value convention with
:attr:`AdHocSignal.STRONG` and :attr:`AdHocSignal.WEAK`.
:meth:`connect` returns a token which can be used with
:meth:`disconnect` to disconnect the coroutine.
"""
self.logger.debug("connecting %r", coro)
return self._connect(coro)
def context_connect(self, coro):
"""
This returns a *context manager*. When entering the context, `coro` is
connected to the :class:`SyncAdHocSignal`. When leaving the context (no
matter whether with or without exception), the connection is
disconnected.
.. seealso::
The returned object is an instance of
:class:`SignalConnectionContext`.
"""
return SignalConnectionContext(self, coro)
async def fire(self, *args, **kwargs):
"""
Emit the signal, calling all coroutines in-line with the given
arguments and in the order they were registered.
This is obviously a coroutine.
Instead of calling :meth:`fire` explicitly, the ad-hoc signal object
itself can be called, too.
"""
for token, coro in list(self._connections.items()):
keep = await coro(*args, **kwargs)
if not keep:
del self._connections[token]
__call__ = fire
class SignalConnectionContext:
def __init__(self, signal, *args, **kwargs):
self._signal = signal
self._args = args
self._kwargs = kwargs
def __enter__(self):
try:
token = self._signal.connect(*self._args, **self._kwargs)
finally:
del self._args
del self._kwargs
self._token = token
return token
def __exit__(self, exc_type, exc_value, traceback):
self._signal.disconnect(self._token)
return False
class AbstractSignal(metaclass=abc.ABCMeta):
def __init__(self, *, doc=None):
super().__init__()
self.__doc__ = doc
self._instances = weakref.WeakKeyDictionary()
@abc.abstractclassmethod
def make_adhoc_signal(cls):
pass
def __get__(self, instance, owner):
if instance is None:
return self
try:
return self._instances[instance]
except KeyError:
new = self.make_adhoc_signal()
self._instances[instance] = new
return new
def __set__(self, instance, value):
raise AttributeError("cannot override Signal attribute")
def __delete__(self, instance):
raise AttributeError("cannot override Signal attribute")
class Signal(AbstractSignal):
"""
A descriptor which returns per-instance :class:`AdHocSignal` objects on
attribute access.
Example use:
.. code-block:: python
class Foo:
on_event = Signal()
f = Foo()
assert isinstance(f.on_event, AdHocSignal)
assert f.on_event is f.on_event
assert Foo().on_event is not f.on_event
"""
@classmethod
def make_adhoc_signal(cls):
return AdHocSignal()
class SyncSignal(AbstractSignal):
"""
A descriptor which returns per-instance :class:`SyncAdHocSignal` objects on
attribute access.
Example use:
.. code-block:: python
class Foo:
on_event = SyncSignal()
f = Foo()
assert isinstance(f.on_event, SyncAdHocSignal)
assert f.on_event is f.on_event
assert Foo().on_event is not f.on_event
"""
@classmethod
def make_adhoc_signal(cls):
return SyncAdHocSignal()
class Filter:
"""
A filter chain for arbitrary data.
This is used for example in :class:`~.stream.StanzaStream` to allow
services and applications to filter inbound and outbound stanzas.
Each function registered with the filter receives at least one argument.
This argument is the object which is to be filtered. The function must
return the object, a replacement or :data:`None`. If :data:`None` is
returned, the filter chain aborts and further functions are not called.
Otherwise, the next function is called with the result of the previous
function until the filter chain is complete.
Other arguments passed to :meth:`filter` are passed unmodified to each
function called; only the first argument is subject to filtering.
.. versionchanged:: 0.9
This class was formerly available at :class:`aioxmpp.stream.Filter`.
.. automethod:: register
.. automethod:: filter
.. automethod:: unregister
.. automethod:: context_register(func[, order])
"""
class Token:
def __str__(self):
return "<{}.{} 0x{:x}>".format(
type(self).__module__,
type(self).__qualname__,
id(self))
def __init__(self):
super().__init__()
self._filter_order = []
def register(self, func, order):
"""
Add a function to the filter chain.
:param func: A callable which is to be added to the filter chain.
:param order: An object indicating the ordering of the function
relative to the others.
:return: Token representing the registration.
Register the function `func` as a filter into the chain. `order` must
be a value which is used as a sorting key to order the functions
registered in the chain.
The type of `order` depends on the use of the filter, as does the
number of arguments and keyword arguments which `func` must accept.
This will generally be documented at the place where the
:class:`Filter` is used.
Functions with the same order are sorted in the order of their
addition, with the function which was added earliest first.
Remember that all values passed to `order` which are registered at the
same time in the same :class:`Filter` need to be totally orderable with
respect to each other.
The returned token can be used to :meth:`unregister` a filter.
"""
token = self.Token()
self._filter_order.append((order, token, func))
self._filter_order.sort(key=lambda x: x[0])
return token
def filter(self, obj, *args, **kwargs):
"""
Filter the given object through the filter chain.
:param obj: The object to filter
:param args: Additional arguments to pass to each filter function.
:param kwargs: Additional keyword arguments to pass to each filter
function.
:return: The filtered object or :data:`None`
See the documentation of :class:`Filter` on how filtering operates.
Returns the object returned by the last function in the filter chain or
:data:`None` if any function returned :data:`None`.
"""
for _, _, func in self._filter_order:
obj = func(obj, *args, **kwargs)
if obj is None:
return None
return obj
def unregister(self, token_to_remove):
"""
Unregister a filter function.
:param token_to_remove: The token as returned by :meth:`register`.
Unregister a function from the filter chain using the token returned by
:meth:`register`.
"""
for i, (_, token, _) in enumerate(self._filter_order):
if token == token_to_remove:
break
else:
raise ValueError("unregistered token: {!r}".format(
token_to_remove))
del self._filter_order[i]
@contextlib.contextmanager
def context_register(self, func, *args):
"""
:term:`Context manager <context manager>` which temporarily registers a
filter function.
:param func: The filter function to register.
:param order: The sorting key for the filter function.
:rtype: :term:`context manager`
:return: Context manager which temporarily registers the filter
function.
If :meth:`register` does not require `order` because it has been
overridden in a subclass, the `order` argument can be omitted here,
too.
.. versionadded:: 0.9
"""
token = self.register(func, *args)
try:
yield
finally:
self.unregister(token)
def first_signal(*signals):
"""
Connect to multiple signals and wait for the first to emit.
:param signals: Signals to connect to.
:type signals: :class:`AdHocSignal`
:return: An awaitable for the first signal to emit.
The awaitable returns the first argument passed to the signal. If the first
argument is an exception, the exception is re-raised from the awaitable.
A common use-case is a situation where a class exposes a "on_finished" type
signal and an "on_failure" type signal. :func:`first_signal` can be used
to combine those nicely::
# e.g. a aioxmpp.im.conversation.AbstractConversation
conversation = ...
await first_signal(
# emits without arguments when the conversation is successfully
# entered
conversation.on_enter,
# emits with an exception when entering the conversation fails
conversation.on_failure,
)
# await first_signal(...) will either raise an exception (failed) or
# return None (success)
.. warning::
Only works with signals which emit with zero or one argument. Signals
which emit with more than one argument or with keyword arguments are
silently ignored! (Thus, if only such signals are connected, the
future will never complete.)
(This is a side-effect of the implementation of
:meth:`AdHocSignal.AUTO_FUTURE`).
.. note::
Does not work with coroutine signals (:class:`SyncAdHocSignal`).
"""
fut = asyncio.Future()
for signal in signals:
signal.connect(fut, signal.AUTO_FUTURE)
return fut
|