File: allpairs.py

package info (click to toggle)
python-allpairspy 2.5.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 204 kB
  • sloc: python: 627; makefile: 42; sh: 6
file content (231 lines) | stat: -rw-r--r-- 7,636 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
from collections import OrderedDict, namedtuple
from functools import cmp_to_key, reduce
from itertools import combinations

from .pairs_storage import PairsStorage, key


class Item:
    @property
    def id(self):
        return self.__item_id

    @property
    def value(self):
        return self.__value

    @property
    def weights(self):
        return self.__weights

    def __init__(self, item_id, value):
        self.__item_id = item_id
        self.__value = value
        self.set_weights([])

    def __str__(self):
        return str(self.__dict__)

    def set_weights(self, weights):
        self.__weights = weights


def get_max_combination_number(prameter_matrix, n):
    param_len_list = [len(value_list) for value_list in prameter_matrix]

    return sum([reduce(lambda x, y: x * y, z) for z in combinations(param_len_list, n)])


def cmp_item(lhs, rhs):
    if lhs.weights == rhs.weights:
        return 0

    return -1 if lhs.weights < rhs.weights else 1


class AllPairs:
    def __init__(self, parameters, filter_func=lambda x: True, previously_tested=None, n=2):
        """
        TODO: check that input arrays are:
            - (optional) has no duplicated values inside single array / or compress such values
        """

        if not previously_tested:
            previously_tested = [[]]

        self.__validate_parameter(parameters)

        self.__is_ordered_dict_param = isinstance(parameters, OrderedDict)
        self.__param_name_list = self.__extract_param_name_list(parameters)
        self.__pairs_class = namedtuple("Pairs", self.__param_name_list)

        self.__filter_func = filter_func
        self.__n = n
        self.__pairs = PairsStorage(n)

        value_matrix = self.__extract_value_matrix(parameters)
        self.__max_unique_pairs_expected = get_max_combination_number(value_matrix, n)
        self.__working_item_matrix = self.__get_working_item_matrix(value_matrix)

        for arr in previously_tested:
            if not arr:
                continue

            if len(arr) != len(self.__working_item_matrix):
                raise RuntimeError("previously tested combination is not complete")

            if not self.__filter_func(arr):
                raise ValueError("invalid tested combination is provided")

            tested = []
            for i, val in enumerate(arr):
                idxs = [
                    Item(item.id, 0) for item in self.__working_item_matrix[i] if item.value == val
                ]

                if len(idxs) != 1:
                    raise ValueError(
                        "value from previously tested combination is not "
                        "found in the parameters or found more than "
                        "once"
                    )

                tested.append(idxs[0])

            self.__pairs.add_sequence(tested)

    def __iter__(self):
        return self

    def next(self):
        return self.__next__()

    def __next__(self):
        assert len(self.__pairs) <= self.__max_unique_pairs_expected

        if len(self.__pairs) == self.__max_unique_pairs_expected:
            # no reasons to search further - all pairs are found
            raise StopIteration()

        previous_unique_pairs_count = len(self.__pairs)
        chosen_item_list = [None] * len(self.__working_item_matrix)
        indexes = [None] * len(self.__working_item_matrix)

        direction = 1
        i = 0

        while -1 < i < len(self.__working_item_matrix):
            if direction == 1:
                # move forward
                self.__resort_working_array(chosen_item_list[:i], i)
                indexes[i] = 0
            elif direction == 0 or direction == -1:
                # scan current array or go back
                indexes[i] += 1
                if indexes[i] >= len(self.__working_item_matrix[i]):
                    direction = -1
                    if i == 0:
                        raise StopIteration()
                    i += direction
                    continue
                direction = 0
            else:
                raise ValueError(f"next(): unknown 'direction' code '{direction}'")

            chosen_item_list[i] = self.__working_item_matrix[i][indexes[i]]

            if self.__filter_func(self.__get_values(chosen_item_list[: i + 1])):
                assert direction > -1
                direction = 1
            else:
                direction = 0
            i += direction

        if len(self.__working_item_matrix) != len(chosen_item_list):
            raise StopIteration()

        self.__pairs.add_sequence(chosen_item_list)

        if len(self.__pairs) == previous_unique_pairs_count:
            # could not find new unique pairs - stop
            raise StopIteration()

        # replace returned array elements with real values and return it
        return self.__get_iteration_value(chosen_item_list)

    def __validate_parameter(self, value):
        if isinstance(value, OrderedDict):
            for parameter_list in value.values():
                if not parameter_list:
                    raise ValueError("each parameter arrays must have at least one item")

            return

        if len(value) < 2:
            raise ValueError("must provide more than one option")

        for parameter_list in value:
            if not parameter_list:
                raise ValueError("each parameter arrays must have at least one item")

    def __resort_working_array(self, chosen_item_list, num):
        for item in self.__working_item_matrix[num]:
            data_node = self.__pairs.get_node_info(item)

            new_combs = [
                # numbers of new combinations to be created if this item is
                # appended to array
                {key(z) for z in combinations(chosen_item_list + [item], i + 1)}
                - self.__pairs.get_combs()[i]
                for i in range(0, self.__n)
            ]

            # weighting the node node that creates most of new pairs is the best
            weights = [-len(new_combs[-1])]

            # less used outbound connections most likely to produce more new
            # pairs while search continues
            weights.extend(
                [len(data_node.out)]
                + [len(x) for x in reversed(new_combs[:-1])]
                + [-data_node.counter]  # less used node is better
            )

            # otherwise we will prefer node with most of free inbound
            # connections; somehow it works out better ;)
            weights.append(-len(data_node.in_))

            item.set_weights(weights)

        self.__working_item_matrix[num].sort(key=cmp_to_key(cmp_item))

    def __get_working_item_matrix(self, parameter_matrix):
        return [
            [
                Item(f"a{param_idx:d}v{value_idx:d}", value)
                for value_idx, value in enumerate(value_list)
            ]
            for param_idx, value_list in enumerate(parameter_matrix)
        ]

    @staticmethod
    def __get_values(item_list):
        return [item.value for item in item_list]

    def __get_iteration_value(self, item_list):
        if not self.__param_name_list:
            return [item.value for item in item_list]

        return self.__pairs_class(*[item.value for item in item_list])

    def __extract_param_name_list(self, parameters):
        if not self.__is_ordered_dict_param:
            return []

        return list(parameters)

    def __extract_value_matrix(self, parameters):
        if not self.__is_ordered_dict_param:
            return parameters

        return [v for v in parameters.values()]