1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
|
.. currentmodule:: altair
.. _user-guide-compound:
Layered and Multi-View Charts
-----------------------------
Along with the basic :class:`Chart` object, Altair provides a number of
compound plot types that can be used to create stacked, layered, faceted,
and repeated charts. They are summarized in the following tables:
====================== =============================== =================== ======================
class functional form operator form reference
====================== =============================== =================== ======================
:class:`LayerChart` ``alt.layer(chart1, chart2)`` ``chart1 + chart2`` :ref:`layer-chart`
:class:`HConcatChart` ``alt.hconcat(chart1, chart2)`` ``chart1 | chart2`` :ref:`hconcat-chart`
:class:`VConcatChart` ``alt.vconcat(chart1, chart2)`` ``chart1 & chart2`` :ref:`vconcat-chart`
====================== =============================== =================== ======================
====================== ==================================== ======================
class method form reference
====================== ==================================== ======================
:class:`RepeatChart` ``chart.repeat(row, column)`` :ref:`repeat-chart`
:class:`FacetChart` ``chart.facet(facet, row, column)`` :ref:`facet-chart`
====================== ==================================== ======================
.. _layer-chart:
Layered Charts
~~~~~~~~~~~~~~
Layered charts allow you to overlay two different charts on the same set of axes.
They can be useful, for example, when you wish to draw multiple marks for the
same data; for example:
.. altair-plot::
import altair as alt
from vega_datasets import data
stocks = data.stocks.url
base = alt.Chart(stocks).encode(
x='date:T',
y='price:Q',
color='symbol:N'
).transform_filter(
alt.datum.symbol == 'GOOG'
)
base.mark_line() + base.mark_point()
Here we have used the ``+`` operator to create a layered chart; alternatively
we could use the ``alt.layer`` function, which accepts as its arguments any
number of charts:
.. altair-plot::
alt.layer(
base.mark_line(),
base.mark_point(),
base.mark_rule()
).interactive()
The output of both of these patterns is a :class:`LayerChart` object, which
has properties and methods similar to the :class:`Chart` object.
Order of Layers
^^^^^^^^^^^^^^^
In a layered chart, the order of layers is determined from the order in which
they are specified. For example, when creating a chart using ``layer1 + layer2``
or ``alt.layer(layer1, layer2)``, ``layer1`` will appear below ``layer2``,
and ``layer2`` may obscure the marks of ``layer1``.
For example, consider the following chart where we plot points on top of a
heat-map:
.. altair-plot::
import altair as alt
from vega_datasets import data
source = data.movies.url
heatmap = alt.Chart(source).mark_rect().encode(
alt.X('IMDB_Rating:Q').bin(),
alt.Y('Rotten_Tomatoes_Rating:Q').bin(),
alt.Color('count()').scale(scheme='greenblue')
)
points = alt.Chart(source).mark_circle(
color='black',
size=5,
).encode(
x='IMDB_Rating:Q',
y='Rotten_Tomatoes_Rating:Q',
)
heatmap + points
If we put the two layers in the opposite order, the points will be drawn first
and will be obscured by the heatmap marks:
.. altair-plot::
points + heatmap
If you do not see the expected output when creating a layered chart, make certain
that you are ordering the layers appropriately.
.. _hconcat-chart:
Horizontal Concatenation
~~~~~~~~~~~~~~~~~~~~~~~~
Displaying two plots side-by-side is most generally accomplished with the
:class:`HConcatChart` object, which can be created using the :class:`hconcat`
function or the ``|`` operator.
For example, here is a scatter-plot concatenated with a histogram showing the
distribution of its points:
.. altair-plot::
import altair as alt
from vega_datasets import data
iris = data.iris.url
chart1 = alt.Chart(iris).mark_point().encode(
x='petalLength:Q',
y='petalWidth:Q',
color='species:N'
).properties(
height=300,
width=300
)
chart2 = alt.Chart(iris).mark_bar().encode(
x='count()',
y=alt.Y('petalWidth:Q').bin(maxbins=30),
color='species:N'
).properties(
height=300,
width=100
)
chart1 | chart2
This example uses the ``|`` operator, but could similarly have been created
with the :func:`hconcat` function:
.. altair-plot::
alt.hconcat(chart1, chart2)
The output of both of these is an :class:`HConcatChart` object, which has
many of the same top-level methods and attributes as the :class:`Chart`
object.
Finally, keep in mind that for certain types of horizontally-concatenated
charts, where each panel modifies just one aspect of the visualization,
repeated and faceted charts are more convenient (see :ref:`repeat-chart`
and :ref:`facet-chart` for more explanation).
.. _vconcat-chart:
Vertical Concatenation
~~~~~~~~~~~~~~~~~~~~~~
Similarly to :ref:`hconcat-chart` above, Altair offers vertical concatenation
via the :func:`vconcat` function or the ``&`` operator.
For example, here we vertically-concatenate two views of the same data,
with a ``brush`` selection to add interaction:
.. altair-plot::
import altair as alt
from vega_datasets import data
source = data.sp500.url
brush = alt.selection_interval(encodings=['x'])
base = alt.Chart(source).mark_area().encode(
x = 'date:T',
y = 'price:Q'
).properties(
width=600,
height=200
)
upper = base.encode(alt.X('date:T').scale(domain=brush))
lower = base.properties(
height=60
).add_params(brush)
alt.vconcat(upper, lower)
Note that we could just as well have used ``upper & lower`` rather than the
more verbose ``alt.vconcat(upper, lower)``.
As with horizontally-concatenated charts, keep in mind that for concatenations
where only one data grouping or encoding is changing in each panel, using
:ref:`repeat-chart` or :ref:`facet-chart` can be more efficient.
.. _repeat-chart:
Repeated Charts
~~~~~~~~~~~~~~~
The :class:`RepeatChart` object provides a convenient interface for a particular
type of horizontal or vertical concatenation, in which the only difference between
the concatenated panels is modification of *one or more encodings*.
For example, suppose you would like to create a multi-panel scatter-plot to show
different projections of a multi-dimensional dataset.
Let's first create such a chart manually using ``hconcat`` and ``vconcat``, before
showing how ``repeat`` can be used to build the chart more efficiently:
.. altair-plot::
import altair as alt
from vega_datasets import data
iris = data.iris.url
base = alt.Chart().mark_point().encode(
color='species:N'
).properties(
width=200,
height=200
).interactive()
chart = alt.vconcat(data=iris)
for y_encoding in ['petalLength:Q', 'petalWidth:Q']:
row = alt.hconcat()
for x_encoding in ['sepalLength:Q', 'sepalWidth:Q']:
row |= base.encode(x=x_encoding, y=y_encoding)
chart &= row
chart
In this example, we explicitly loop over different x and y encodings
to create a 2 x 2 grid of charts showing different views of the data.
The code is straightforward, if a bit verbose.
The :class:`RepeatChart` pattern, accessible via the :meth:`Chart.repeat`
method, makes this type of chart a bit easier to produce:
.. altair-plot::
import altair as alt
from vega_datasets import data
iris = data.iris.url
alt.Chart(iris).mark_point().encode(
alt.X(alt.repeat("column"), type='quantitative'),
alt.Y(alt.repeat("row"), type='quantitative'),
color='species:N'
).properties(
width=200,
height=200
).repeat(
row=['petalLength', 'petalWidth'],
column=['sepalLength', 'sepalWidth']
).interactive()
The :meth:`Chart.repeat` method is the key here: it lets you specify a set of
encodings for the row and/or column which can be referred to in the chart's
encoding specification using ``alt.repeat('row')`` or ``alt.repeat('column')``.
Another option to use the ``repeat`` method is for layering. Here below the
columns ``US_Gross`` and ``Worldwide_Gross`` are layered on the ``y``-axis
using ``alt.repeat('layer')``:
.. altair-plot::
import altair as alt
from vega_datasets import data
source = data.movies()
alt.Chart(source).mark_line().encode(
x=alt.X("IMDB_Rating").bin(),
y=alt.Y(alt.repeat('layer')).aggregate('mean').title("Mean of US and Worldwide Gross"),
color=alt.ColorDatum(alt.repeat('layer'))
).repeat(layer=["US_Gross", "Worldwide_Gross"])
Currently ``repeat`` can only be encodings (not, e.g., data transforms)
but there is discussion within the Vega-Lite community about making this pattern
more general in the future.
.. _facet-chart:
Faceted Charts
~~~~~~~~~~~~~~
Like repeated charts, Faceted charts provide a more convenient API for creating
multiple views of a dataset for a specific type of chart: one where each panel
contains a different subset of data.
We could do this manually using a filter transform along with a horizontal
concatenation:
.. altair-plot::
import altair as alt
from vega_datasets import data
iris = data.iris.url
base = alt.Chart(iris).mark_point().encode(
x='petalLength:Q',
y='petalWidth:Q',
color='species:N'
).properties(
width=160,
height=160
)
chart = alt.hconcat()
for species in ['setosa', 'versicolor', 'virginica']:
chart |= base.transform_filter(alt.datum.species == species)
chart
As with the manual approach to :ref:`repeat-chart`, this is straightforward,
if a bit verbose.
Using ``alt.facet`` it becomes a bit cleaner:
.. altair-plot::
alt.Chart(iris).mark_point().encode(
x='petalLength:Q',
y='petalWidth:Q',
color='species:N'
).properties(
width=180,
height=180
).facet(
column='species:N'
)
For simple charts like this, there is also a ``column`` encoding channel that
can give the same results:
.. altair-plot::
alt.Chart(iris).mark_point().encode(
x='petalLength:Q',
y='petalWidth:Q',
color='species:N',
column='species:N'
).properties(
width=180,
height=180
)
The advantage of using ``alt.facet`` is that it can create faceted views of
more complicated compound charts. For example, here is a faceted view of a
layered chart with a hover selection:
.. altair-plot::
hover = alt.selection_point(on='mouseover', nearest=True, empty=False)
base = alt.Chart(iris).encode(
x='petalLength:Q',
y='petalWidth:Q',
color=alt.condition(hover, 'species:N', alt.value('lightgray'))
).properties(
width=180,
height=180,
)
points = base.mark_point().add_params(
hover
)
text = base.mark_text(dy=-5).encode(
text = 'species:N',
opacity = alt.condition(hover, alt.value(1), alt.value(0))
)
alt.layer(points, text).facet(
'species:N',
)
Though each of the above examples have faceted the data across columns,
faceting across rows (or across rows *and* columns) is supported as
well.
|