1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
|
.. currentmodule:: altair
.. _user-guide-customization:
Customizing Visualizations
==========================
Altair's goal is to automatically choose useful plot settings and configurations
so that the user is free to think about the data rather than the mechanics
of plotting. That said, once you have a useful visualization, you will often
want to adjust certain aspects of it. This section of the documentation
outlines some of the ways to make these adjustments.
Global Config vs. Local Config vs. Encoding
-------------------------------------------
There are often two or three different ways to specify the look of your plots
depending on the situation.
For example, suppose we are creating a scatter plot of the ``cars`` dataset:
.. altair-plot::
import altair as alt
from vega_datasets import data
cars = data.cars.url
alt.Chart(cars).mark_point().encode(
x='Acceleration:Q',
y='Horsepower:Q'
)
Suppose you wish to change the color of the points to red, and the opacity
of the points to 20%. There are three possible approaches to these:
1. “Global Config” acts on an entire chart object
2. “Local Config” acts on one mark of the chart
3. “Encoding” channels can also be used to set some chart properties
Global Config
~~~~~~~~~~~~~
First, every chart type has a ``"config"`` property at the top level that acts
as a sort of theme for the whole chart and all of its sub-charts.
Here you can specify things like axes properties, mark properties, selection
properties, and more.
Altair allows you to access these through the ``configure_*`` methods of the
chart. Here we will use the :meth:`~Chart.configure_mark` property:
.. altair-plot::
alt.Chart(cars).mark_point().encode(
x='Acceleration:Q',
y='Horsepower:Q'
).configure_mark(
opacity=0.2,
color='red'
)
There are a couple things to be aware of when using this kind of global configuration:
1. By design configurations will affect *every mark* used within the chart
2. The global configuration is only permissible at the top-level; so, for example,
if you tried to layer the above chart with another, it would result in an error.
For a full discussion of global configuration options, see :ref:`user-guide-configuration`.
Local Config
~~~~~~~~~~~~
If you would like to configure the look of the mark locally, such that the setting
only affects the particular chart property you reference, this can be done via a
local configuration setting.
In the case of mark properties, the best approach is to set the property as an
argument to the ``mark_*`` method. Here we will use :meth:`~Chart.mark_point`:
.. altair-plot::
alt.Chart(cars).mark_point(opacity=0.2, color='red').encode(
x='Acceleration:Q',
y='Horsepower:Q'
)
Unlike when using the global configuration, here it is possible to use the resulting
chart as a layer or facet in a compound chart.
Local config settings like this one will always override global settings.
Encoding
~~~~~~~~
Finally, it is possible to set chart properties via the encoding channel
(see :ref:`user-guide-encoding`). Rather than mapping a property to a data column,
you can map a property directly to a value using the :func:`value` function:
.. altair-plot::
alt.Chart(cars).mark_point().encode(
x='Acceleration:Q',
y='Horsepower:Q',
opacity=alt.value(0.2),
color=alt.value('red')
)
Note that only a limited set of mark properties can be bound to encodings, so
for some (e.g. ``fillOpacity``, ``strokeOpacity``, etc.) the encoding approach
is not available.
Encoding settings will always override local or global configuration settings.
Which to Use?
~~~~~~~~~~~~~
The precedence order for the three approaches is (from lowest to highest)
*global config*, *local config*, *encoding*. That is, if a chart property is
set both globally and locally, the local setting will win-out. If a property
is set both via a configuration and an encoding, the encoding will win-out.
In most usage, we recommend always using the highest-precedence means of
setting properties; i.e. an encoding, or a local configuration for properties
that are not tied to an encoding.
Global configurations should be reserved for creating themes that are applied
just before the chart is rendered.
Adjusting the Title
-------------------
By default an Altair chart does not have a title, as seen in this example.
.. altair-plot::
import altair as alt
from vega_datasets import data
iowa = data.iowa_electricity.url
alt.Chart(iowa).mark_area().encode(
x="year:T",
y=alt.Y("net_generation:Q").stack("normalize"),
color="source:N"
)
You can add a simple title by passing the `title` keyword argument with the data.
.. altair-plot::
alt.Chart(iowa, title="Iowa's green energy boom").mark_area().encode(
x="year:T",
y=alt.Y("net_generation:Q").stack("normalize"),
color="source:N"
)
It is also possible to add a subtitle by passing in an `alt.Title` object.
.. altair-plot::
alt.Chart(
iowa,
title=alt.Title(
"Iowa's green energy boom",
subtitle="A growing share of the state's energy has come from renewable sources"
)
).mark_area().encode(
x="year:T",
y=alt.Y("net_generation:Q").stack("normalize"),
color="source:N"
)
The subtitle can run to two lines by passing a list where each list item is a line (if you don't want to create this list manually as in the example below, you can use the ``wrap`` function from the `textwrap library <https://docs.python.org/3/library/textwrap.html>`_ to split a string into a list of substrings of a certain length).
.. altair-plot::
alt.Chart(
iowa,
title=alt.Title(
"Iowa's green energy boom",
subtitle=["A growing share of the state's energy", "has come from renewable sources"]
)
).mark_area().encode(
x="year:T",
y=alt.Y("net_generation:Q").stack("normalize"),
color="source:N"
)
The ``Title`` object can also configure a number of other attributes, e.g., the position of the title and subtitle (see see :ref:`user-guide-customization` for details).
.. altair-plot::
alt.Chart(
iowa,
title=alt.Title(
"Iowa's green energy boom",
subtitle=["A growing share of the state's energy", "has come from renewable sources"],
anchor='start',
orient='bottom',
offset=20
)
).mark_area().encode(
x="year:T",
y=alt.Y("net_generation:Q").stack("normalize"),
color="source:N"
)
Adjusting Axis Limits
---------------------
The default axis limit used by Altair is dependent on the type of the data.
To fine-tune the axis limits beyond these defaults, you can use the
:class:`Scale` property of the axis encodings. For example, consider the
following plot:
.. altair-plot::
import altair as alt
from vega_datasets import data
cars = data.cars.url
alt.Chart(cars).mark_point().encode(
x='Acceleration:Q',
y='Horsepower:Q'
)
Altair inherits from Vega-Lite the convention of always including the zero-point
in quantitative axes; if you would like to turn this off, you can add a
:class:`Scale` property to the :class:`X` encoding that specifies ``zero=False``:
.. altair-plot::
alt.Chart(cars).mark_point().encode(
alt.X('Acceleration:Q').scale(zero=False),
y='Horsepower:Q'
)
To specify exact axis limits, you can use the ``domain`` property of the scale:
.. altair-plot::
alt.Chart(cars).mark_point().encode(
alt.X('Acceleration:Q').scale(domain=(5, 20)),
y='Horsepower:Q'
)
The problem is that the data still exists beyond the scale, and we need to tell
Altair what to do with this data. One option is to "clip" the data by setting
the ``"clip"`` property of the mark to True:
.. altair-plot::
alt.Chart(cars).mark_point(clip=True).encode(
alt.X('Acceleration:Q').scale(domain=(5, 20)),
y='Horsepower:Q'
)
Another option is to "clamp" the data; that is, to move points beyond the
limit to the edge of the domain:
.. altair-plot::
alt.Chart(cars).mark_point().encode(
alt.X('Acceleration:Q').scale(domain=(5, 20), clamp=True),
y='Horsepower:Q'
).interactive()
For interactive charts like the one above, the clamping happens dynamically,
which can be useful for keeping in mind outliers as you pan and zoom on the
chart.
Adjusting Axis Labels
---------------------
Altair also gives you tools to easily configure the appearance of axis labels.
For example consider this plot:
.. altair-plot::
import pandas as pd
df = pd.DataFrame({'x': [0.03, 0.04, 0.05, 0.12, 0.07, 0.15],
'y': [10, 35, 39, 50, 24, 35]})
alt.Chart(df).mark_circle().encode(
x='x',
y='y'
)
To fine-tune the formatting of the tick labels and to add a custom title to
each axis, we can pass to the :class:`X` and :class:`Y` encoding a custom
:class:`Axis` definition.
Here is an example of formatting the x labels as a percentage, and
the y labels as a dollar value:
.. altair-plot::
alt.Chart(df).mark_circle().encode(
alt.X('x').axis(format='%').title('percentage'),
alt.Y('y').axis(format='$').title('dollar amount')
)
Axis labels can also be easily removed:
.. altair-plot::
alt.Chart(df).mark_circle().encode(
alt.X('x').axis(labels=False),
alt.Y('y').axis(labels=False)
)
Additional formatting codes are available; for a listing of these see the
`d3 Format Code Documentation <https://github.com/d3/d3-format/blob/master/README.md#format>`_.
Adjusting the Legend
--------------------
A legend is added to the chart automatically when the `color`, `shape` or `size` arguments are passed to the :func:`encode` function. In this example we'll use `color`.
.. altair-plot::
import altair as alt
from vega_datasets import data
iris = data.iris()
alt.Chart(iris).mark_point().encode(
x='petalWidth',
y='petalLength',
color='species'
)
In this case, the legend can be customized by introducing the :class:`Color` class and taking advantage of its `legend` argument. The `shape` and `size` arguments have their own corresponding classes.
The legend option on all of them expects a :class:`Legend` object as its input, which accepts arguments to customize many aspects of its appearance. One simple example is giving the legend a `title`.
.. altair-plot::
import altair as alt
from vega_datasets import data
iris = data.iris()
alt.Chart(iris).mark_point().encode(
x='petalWidth',
y='petalLength',
color=alt.Color('species').title("Species by color")
)
Another thing you can do is move the legend to another position with the `orient` argument.
.. altair-plot::
import altair as alt
from vega_datasets import data
iris = data.iris()
alt.Chart(iris).mark_point().encode(
x='petalWidth',
y='petalLength',
color=alt.Color('species').legend(orient="left")
)
You can remove the legend entirely by submitting a null value.
.. altair-plot::
import altair as alt
from vega_datasets import data
iris = data.iris()
alt.Chart(iris).mark_point().encode(
x='petalWidth',
y='petalLength',
color=alt.Color('species').legend(None),
)
Removing the Chart Border
-------------------------
Basic Altair charts are drawn with both a grid and an outside border.
To create a chart with no border, you will need to remove them both.
As an example, let's start with a simple scatter plot.
.. altair-plot::
import altair as alt
from vega_datasets import data
iris = data.iris()
alt.Chart(iris).mark_point().encode(
x='petalWidth',
y='petalLength',
color='species'
)
First remove the grid using the :meth:`Chart.configure_axis` method.
.. altair-plot::
import altair as alt
from vega_datasets import data
iris = data.iris()
alt.Chart(iris).mark_point().encode(
x='petalWidth',
y='petalLength',
color='species'
).configure_axis(
grid=False
)
You'll note that while the inside rules are gone, the outside border remains.
Hide it by setting ``stroke=None`` inside :meth:`Chart.configure_view`
(``strokeWidth=0`` and ``strokeOpacity=0`` also works):
.. altair-plot::
import altair as alt
from vega_datasets import data
iris = data.iris()
alt.Chart(iris).mark_point().encode(
x='petalWidth',
y='petalLength',
color='species'
).configure_axis(
grid=False
).configure_view(
stroke=None
)
It is also possible to completely remove all borders and axes by
combining the above option with setting ``axis`` to ``None`` during encoding.
.. altair-plot::
import altair as alt
from vega_datasets import data
iris = data.iris()
alt.Chart(iris).mark_point().encode(
alt.X('petalWidth').axis(None),
alt.Y('petalLength').axis(None),
color='species'
).configure_axis(
grid=False
).configure_view(
stroke=None
)
Customizing Colors
------------------
As discussed in :ref:`type-legend-scale`, Altair chooses a suitable default color
scheme based on the type of the data that the color encodes. These defaults can
be customized using the `scale` argument of the :class:`Color` class.
The :class:`Scale` class passed to the `scale` argument provides a number of options
for customizing the color scale; we will discuss a few of them here.
Color Schemes
~~~~~~~~~~~~~
Altair includes a set of named color schemes for both categorical and sequential
data, defined by the vega project; see the
`Vega documentation <https://vega.github.io/vega/docs/schemes/>`_
for a full gallery of available color schemes. These schemes
can be passed to the `scheme` argument of the :class:`Scale` class:
.. altair-plot::
import altair as alt
from vega_datasets import data
iris = data.iris()
alt.Chart(iris).mark_point().encode(
x='petalWidth',
y='petalLength',
color=alt.Color('species').scale(scheme='dark2')
)
Color Domain and Range
~~~~~~~~~~~~~~~~~~~~~~
To make a custom mapping of discrete values to colors, use the
`domain` and `range` parameters of the :class:`Scale` class for
values and colors respectively.
.. altair-plot::
import altair as alt
from vega_datasets import data
iris = data.iris()
domain = ['setosa', 'versicolor', 'virginica']
range_ = ['red', 'green', 'blue']
alt.Chart(iris).mark_point().encode(
x='petalWidth',
y='petalLength',
color=alt.Color('species').scale(domain=domain, range=range_)
)
Raw Color Values
~~~~~~~~~~~~~~~~
The ``scale`` is what maps the raw input values into an appropriate color encoding
for displaying the data. If your data entries consist of raw color names or codes,
you can set ``scale=None`` to use those colors directly:
.. altair-plot::
import pandas as pd
import altair as alt
data = pd.DataFrame({
'x': range(6),
'color': ['red', 'steelblue', 'chartreuse', '#F4D03F', '#D35400', '#7D3C98']
})
alt.Chart(data).mark_point(
filled=True,
size=100
).encode(
x='x',
color=alt.Color('color').scale(None)
)
Adjusting the Width of Bar Marks
--------------------------------
The width of the bars in a bar plot are controlled through the ``size`` property in the :meth:`~Chart.mark_bar()`:
.. altair-plot::
import altair as alt
import pandas as pd
data = pd.DataFrame({'name': ['a', 'b'], 'value': [4, 10]})
alt.Chart(data).mark_bar(size=10).encode(
x='name:O',
y='value:Q'
)
But since ``mark_bar(size=10)`` only controls the width of the bars, it might become possible that the width of the chart is not adjusted accordingly:
.. altair-plot::
alt.Chart(data).mark_bar(size=30).encode(
x='name:O',
y='value:Q'
)
The width of the chart containing the bar plot can be controlled through setting the ``width``
property of the chart, either to a pixel value for any chart, or to a step value
in the case of discrete scales.
Here is an example of setting the width to a single value for the whole chart:
.. altair-plot::
alt.Chart(data).mark_bar(size=30).encode(
x='name:O',
y='value:Q'
).properties(width=200)
The width of the bars are set using ``mark_bar(size=30)`` and the width of the chart is set using ``properties(width=100)``
Here is an example of setting the step width for a discrete scale:
.. altair-plot::
alt.Chart(data).mark_bar(size=30).encode(
x='name:N',
y='value:Q'
).properties(width=alt.Step(100))
The width of the bars are set using ``mark_bar(size=30)`` and the width that is allocated for each bar bar in the the chart is set using ``width=alt.Step(100)``
.. _customization-chart-size:
Adjusting Chart Size
--------------------
The size of charts can be adjusted using the ``width`` and ``height`` properties.
For example:
.. altair-plot::
import altair as alt
from vega_datasets import data
cars = data.cars()
alt.Chart(cars).mark_bar().encode(
x='Origin',
y='count()'
).properties(
width=200,
height=150
)
Note that in the case of faceted or other compound charts, this width and height applies to
the subchart rather than to the overall chart:
.. altair-plot::
alt.Chart(cars).mark_bar().encode(
x='Origin',
y='count()',
column='Cylinders:Q'
).properties(
width=100,
height=100
)
If you want your chart size to respond to the width of the HTML page or container in which
it is rendererd, you can set ``width`` or ``height`` to the string ``"container"``:
.. altair-plot::
:div_class_: full-width-plot
alt.Chart(cars).mark_bar().encode(
x='Origin',
y='count()',
).properties(
width='container',
height=200
)
Note that this will only scale with the container if its parent element has a size determined
outside the chart itself; For example, the container may be a ``<div>`` element that has style
``width: 100%; height: 300px``.
.. _chart-themes:
Chart Themes
------------
Altair makes available a theme registry that lets users apply chart configurations
globally within any Python session. This is done via the ``alt.themes`` object.
The themes registry consists of functions which define a specification dictionary
that will be added to every created chart.
For example, the default theme configures the default size of a single chart:
>>> import altair as alt
>>> default = alt.themes.get()
>>> default()
{'config': {'view': {'continuousWidth': 300, 'continuousHeight': 300}}}
You can see that any chart you create will have this theme applied, and these configurations
added to its specification:
.. altair-plot::
:output: repr
import altair as alt
from vega_datasets import data
chart = alt.Chart(data.cars.url).mark_point().encode(
x='Horsepower:Q',
y='Miles_per_Gallon:Q'
)
chart.to_dict()
The rendered chart will then reflect these configurations:
.. altair-plot::
chart
Changing the Theme
~~~~~~~~~~~~~~~~~~
If you would like to enable any other theme for the length of your Python session,
you can call ``alt.themes.enable(theme_name)``.
For example, Altair includes a theme in which the chart background is opaque
rather than transparent:
.. altair-plot::
:output: repr
alt.themes.enable('opaque')
chart.to_dict()
.. altair-plot::
chart
Notice that the background color of the chart is now set to white.
If you would like no theme applied to your chart, you can use the
theme named ``'none'``:
.. altair-plot::
:output: repr
alt.themes.enable('none')
chart.to_dict()
.. altair-plot::
chart
Because the view configuration is not set, the chart is smaller
than the default rendering.
If you would like to use any theme just for a single chart, you can use the
``with`` statement to enable a temporary theme:
.. altair-plot::
:output: none
with alt.themes.enable('default'):
spec = chart.to_json()
Currently Altair does not offer many built-in themes, but we plan to add
more options in the future.
Defining a Custom Theme
~~~~~~~~~~~~~~~~~~~~~~~
The theme registry also allows defining and registering custom themes.
A theme is simply a function that returns a dictionary of default values
to be added to the chart specification at rendering time, which is then
registered and activated.
For example, here we define a theme in which all marks are drawn with black
fill unless otherwise specified:
.. altair-plot::
import altair as alt
from vega_datasets import data
# define the theme by returning the dictionary of configurations
def black_marks():
return {
'config': {
'view': {
'height': 300,
'width': 300,
},
'mark': {
'color': 'black',
'fill': 'black'
}
}
}
# register the custom theme under a chosen name
alt.themes.register('black_marks', black_marks)
# enable the newly registered theme
alt.themes.enable('black_marks')
# draw the chart
cars = data.cars.url
alt.Chart(cars).mark_point().encode(
x='Horsepower:Q',
y='Miles_per_Gallon:Q'
)
If you want to restore the default theme, use:
.. altair-plot::
:output: none
alt.themes.enable('default')
For more ideas on themes, see the `Vega Themes`_ repository.
.. _Vega Themes: https://github.com/vega/vega-themes/
|