1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
|
.. currentmodule:: altair
.. _user-guide-data:
Specifying Data
---------------
The basic data model used by Altair is tabular data,
similar to a spreadsheet or database table.
Individual datasets are assumed to contain a collection of records (rows),
which may contain any number of named data fields (columns).
Each top-level chart object (i.e. :class:`Chart`, :class:`LayerChart`,
:class:`VConcatChart`, :class:`HConcatChart`, :class:`RepeatChart`,
and :class:`FacetChart`) accepts a dataset as its first argument.
There are many different ways of specifying a dataset:
- as a `Pandas DataFrame <http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html>`_
- as a DataFrame that supports the DataFrame Interchange Protocol (contains a ``__dataframe__`` attribute), e.g. polars and pyarrow. This is experimental.
- as a :class:`Data` or related object (i.e. :class:`UrlData`, :class:`InlineData`, :class:`NamedData`)
- as a url string pointing to a ``json`` or ``csv`` formatted text file
- as a `geopandas GeoDataFrame <http://geopandas.org/data_structures.html#geodataframe>`_, `Shapely Geometries <https://shapely.readthedocs.io/en/latest/manual.html#geometric-objects>`_, `GeoJSON Objects <https://github.com/jazzband/geojson#geojson-objects>`_ or other objects that support the ``__geo_interface__``
- as a generated dataset such as numerical sequences or geographic reference elements
When data is specified as a pandas DataFrame, Altair
uses the data type information provided by pandas to automatically determine
the data types required in the encoding. For example, here we specify data via a pandas DataFrame
and Altair automatically detects that the x-column should be visualized on a categorical (nominal) scale
and that the y-column should be visualized on a quantitative scale:
.. altair-plot::
import altair as alt
import pandas as pd
data = pd.DataFrame({'x': ['A', 'B', 'C', 'D', 'E'],
'y': [5, 3, 6, 7, 2]})
alt.Chart(data).mark_bar().encode(
x='x',
y='y',
)
By comparison,
all other ways of specifying the data (including non-pandas DataFrames)
requires encoding types to be declared explicitly.
Here we create the same chart as above using a :class:`Data` object,
with the data specified as a JSON-style list of records:
.. altair-plot::
import altair as alt
data = alt.Data(values=[{'x': 'A', 'y': 5},
{'x': 'B', 'y': 3},
{'x': 'C', 'y': 6},
{'x': 'D', 'y': 7},
{'x': 'E', 'y': 2}])
alt.Chart(data).mark_bar().encode(
x='x:N', # specify nominal data
y='y:Q', # specify quantitative data
)
Notice the extra markup required in the encoding; because Altair cannot infer
the types within a :class:`Data` object, we must specify them manually
(here we use :ref:`shorthand-description` to specify *nominal* (``N``) for ``x``
and *quantitative* (``Q``) for ``y``; see :ref:`encoding-data-types`).
Similarly, we must also specify the data type when referencing data by URL:
.. altair-plot::
import altair as alt
from vega_datasets import data
url = data.cars.url
alt.Chart(url).mark_point().encode(
x='Horsepower:Q',
y='Miles_per_Gallon:Q'
)
Encodings and their associated types are further discussed in :ref:`user-guide-encoding`.
Below we go into more detail about the different ways of specifying data in an Altair chart.
Pandas DataFrame
~~~~~~~~~~~~~~~~
.. _data-in-index:
Including Index Data
^^^^^^^^^^^^^^^^^^^^
By design Altair only accesses dataframe columns, not dataframe indices.
At times, relevant data appears in the index. For example:
.. altair-plot::
:output: repr
import numpy as np
rand = np.random.RandomState(0)
data = pd.DataFrame({'value': rand.randn(100).cumsum()},
index=pd.date_range('2018', freq='D', periods=100))
data.head()
If you would like the index to be available to the chart, you can explicitly
turn it into a column using the ``reset_index()`` method of Pandas dataframes:
.. altair-plot::
alt.Chart(data.reset_index()).mark_line().encode(
x='index:T',
y='value:Q'
)
If the index object does not have a ``name`` attribute set, the resulting
column will be called ``"index"``.
More information is available in the
`Pandas documentation <http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.reset_index.html>`_.
.. _data-long-vs-wide:
Long-form vs. Wide-form Data
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
There are two common conventions for storing data in a dataframe, sometimes called
*long-form* and *wide-form*. Both are sensible patterns for storing data in
a tabular format; briefly, the difference is this:
- **wide-form data** has one row per *independent variable*, with metadata
recorded in the *row and column labels*.
- **long-form data** has one row per *observation*, with metadata recorded
within the table as *values*.
Altair's grammar works best with **long-form** data, in which each row
corresponds to a single observation along with its metadata.
A concrete example will help in making this distinction more clear.
Consider a dataset consisting of stock prices of several companies over time.
The wide-form version of the data might be arranged as follows:
.. altair-plot::
:output: repr
:chart-var-name: wide_form
wide_form = pd.DataFrame({'Date': ['2007-10-01', '2007-11-01', '2007-12-01'],
'AAPL': [189.95, 182.22, 198.08],
'AMZN': [89.15, 90.56, 92.64],
'GOOG': [707.00, 693.00, 691.48]})
print(wide_form)
Notice that each row corresponds to a single time-stamp (here time is the
independent variable), while metadata for each observation
(i.e. company name) is stored within the column labels.
The long-form version of the same data might look like this:
.. altair-plot::
:output: repr
:chart-var-name: long_form
long_form = pd.DataFrame({'Date': ['2007-10-01', '2007-11-01', '2007-12-01',
'2007-10-01', '2007-11-01', '2007-12-01',
'2007-10-01', '2007-11-01', '2007-12-01'],
'company': ['AAPL', 'AAPL', 'AAPL',
'AMZN', 'AMZN', 'AMZN',
'GOOG', 'GOOG', 'GOOG'],
'price': [189.95, 182.22, 198.08,
89.15, 90.56, 92.64,
707.00, 693.00, 691.48]})
print(long_form)
Notice here that each row contains a single observation (i.e. price), along
with the metadata for this observation (the date and company name).
Importantly, the column and index labels no longer contain any useful metadata.
As mentioned above, Altair works best with this long-form data, because relevant
data and metadata are stored within the table itself, rather than within the
labels of rows and columns:
.. altair-plot::
alt.Chart(long_form).mark_line().encode(
x='Date:T',
y='price:Q',
color='company:N'
)
Wide-form data can be similarly visualized using e.g. layering
(see :ref:`layer-chart`), but it is far less convenient within Altair's grammar.
If you would like to convert data from wide-form to long-form, there are two possible
approaches: it can be done as a preprocessing step using pandas, or as a transform
step within the chart itself. We will detail to two approaches below.
.. _data-converting-long-form:
Converting with Pandas
""""""""""""""""""""""
This sort of data manipulation can be done as a preprocessing step using Pandas_,
and is discussed in detail in the `Reshaping and Pivot Tables`_ section of the
Pandas documentation.
For converting wide-form data to the long-form data used by Altair, the ``melt``
method of dataframes can be used. The first argument to ``melt`` is the column
or list of columns to treat as index variables; the remaining columns will
be combined into an indicator variable and a value variable whose names can
be optionally specified:
.. altair-plot::
:output: repr
wide_form.melt('Date', var_name='company', value_name='price')
For more information on the ``melt`` method, see the `Pandas melt documentation`_.
In case you would like to undo this operation and convert from long-form back
to wide-form, the ``pivot`` method of dataframes is useful.
.. altair-plot::
:output: repr
long_form.pivot(index='Date', columns='company', values='price').reset_index()
For more information on the ``pivot`` method, see the `Pandas pivot documentation`_.
Converting with Fold Transform
""""""""""""""""""""""""""""""
If you would like to avoid data preprocessing, you can reshape your data using Altair's
Fold Transform (see :ref:`user-guide-fold-transform` for a full discussion).
With it, the above chart can be reproduced as follows:
.. altair-plot::
alt.Chart(wide_form).transform_fold(
['AAPL', 'AMZN', 'GOOG'],
as_=['company', 'price']
).mark_line().encode(
x='Date:T',
y='price:Q',
color='company:N'
)
Notice that unlike the pandas ``melt`` function we must explicitly specify the columns
to be folded. The ``as_`` argument is optional, with the default being ``["key", "value"]``.
.. _data-generated:
Generated Data
~~~~~~~~~~~~~~
At times it is convenient to not use an external data source, but rather generate data for
display within the chart specification itself. The benefit is that the chart specification
can be made much smaller for generated data than for embedded data.
Sequence Generator
^^^^^^^^^^^^^^^^^^
Here is an example of using the :func:`sequence` function to generate a sequence of *x*
data, along with a :ref:`user-guide-calculate-transform` to compute *y* data.
.. altair-plot::
import altair as alt
# Note that the following generator is functionally similar to
# data = pd.DataFrame({'x': np.arange(0, 10, 0.1)})
data = alt.sequence(0, 10, 0.1, as_='x')
alt.Chart(data).transform_calculate(
y='sin(datum.x)'
).mark_line().encode(
x='x:Q',
y='y:Q',
)
Graticule Generator
^^^^^^^^^^^^^^^^^^^
Another type of data that is convenient to generate in the chart itself is the latitude/longitude
lines on a geographic visualization, known as a graticule. These can be created using Altair's
:func:`graticule` generator function. Here is a simple example:
.. altair-plot::
import altair as alt
data = alt.graticule(step=[15, 15])
alt.Chart(data).mark_geoshape(stroke='black').project(
'orthographic',
rotate=[0, -45, 0]
)
Sphere Generator
^^^^^^^^^^^^^^^^
Finally when visualizing the globe a sphere can be used as a background layer
within a map to represent the extent of the Earth. This sphere data can be
created using Altair's :func:`sphere` generator function. Here is an example:
.. altair-plot::
import altair as alt
sphere_data = alt.sphere()
grat_data = alt.graticule(step=[15, 15])
background = alt.Chart(sphere_data).mark_geoshape(fill='aliceblue')
lines = alt.Chart(grat_data).mark_geoshape(stroke='lightgrey')
alt.layer(background, lines).project('naturalEarth1')
.. _Pandas: http://pandas.pydata.org/
.. _Pandas pivot documentation: https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.pivot.html
.. _Pandas melt documentation: https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.melt.html#pandas.DataFrame.melt
.. _Reshaping and Pivot Tables: https://pandas.pydata.org/pandas-docs/stable/reshaping.html
Spatial Data
~~~~~~~~~~~~
In this section, we explain different methods for reading spatial data into Altair.
To learn more about how to work with this data after you have read it in,
please see the :ref:`user-guide-geoshape-marks` mark page.
.. _spatial-data-gdf:
GeoPandas GeoDataFrame
^^^^^^^^^^^^^^^^^^^^^^
It is convenient to use GeoPandas as the source for your spatial data.
GeoPandas can read many types of spatial data and Altair works well with GeoDataFrames.
Here we define four polygon geometries into a
GeoDataFrame and visualize these using the ``mark_geoshape``.
.. altair-plot::
:output: repr
from shapely import geometry
import geopandas as gpd
import altair as alt
data_geoms = [
{"color": "#F3C14F", "geometry": geometry.Polygon([[1.45, 3.75], [1.45, 0], [0, 0], [1.45, 3.75]])},
{"color": "#4098D7", "geometry": geometry.Polygon([[1.45, 0], [1.45, 3.75], [2.57, 3.75], [2.57, 0], [2.33, 0], [1.45, 0]])},
{"color": "#66B4E2", "geometry": geometry.Polygon([[2.33, 0], [2.33, 2.5], [3.47, 2.5], [3.47, 0], [3.2, 0], [2.57, 0], [2.33, 0]])},
{"color": "#A9CDE0", "geometry": geometry.Polygon([[3.2, 0], [3.2, 1.25], [4.32, 1.25], [4.32, 0], [3.47, 0], [3.2, 0]])},
]
gdf_geoms = gpd.GeoDataFrame(data_geoms)
gdf_geoms
Since the spatial data in our example is not geographic,
we use ``project`` configuration ``type="identity", reflectY=True`` to draw the
geometries without applying a geographic projection. By using ``alt.Color(...).scale(None)`` we
disable the automatic color assignment in Altair
and instead directly use the provided Hex color codes.
.. altair-plot::
alt.Chart(gdf_geoms, title="Vega-Altair").mark_geoshape().encode(
alt.Color("color:N").scale(None)
).project(type="identity", reflectY=True)
.. _spatial-data-inline-geojson:
Inline GeoJSON Object
^^^^^^^^^^^^^^^^^^^^^
If your source data is a GeoJSON file and you do not want to load it
into a GeoPandas GeoDataFrame you can provide it as a dictionary to the Altair ``Data`` class. A
GeoJSON file normally consists of a ``FeatureCollection`` with a list of
``features`` where the information for each geometry is specified within a
``properties`` dictionary. In the following example a GeoJSON-like data
object is specified into a ``Data`` class using the ``property``
value of the ``key`` that contain the nested list (here named
``features``).
.. altair-plot::
:output: repr
obj_geojson = {
"type": "FeatureCollection",
"features":[
{"type": "Feature", "properties": {"location": "left"}, "geometry": {"type": "Polygon", "coordinates": [[[1.45, 3.75], [1.45, 0], [0, 0], [1.45, 3.75]]]}},
{"type": "Feature", "properties": {"location": "middle-left"}, "geometry": {"type": "Polygon", "coordinates": [[[1.45, 0], [1.45, 3.75], [2.57, 3.75], [2.57, 0], [2.33, 0], [1.45, 0]]]}},
{"type": "Feature", "properties": {"location": "middle-right"}, "geometry": {"type": "Polygon", "coordinates": [[[2.33, 0], [2.33, 2.5], [3.47, 2.5], [3.47, 0], [3.2, 0], [2.57, 0], [2.33, 0]]]}},
{"type": "Feature", "properties": {"location": "right"}, "geometry": {"type": "Polygon", "coordinates": [[[3.2, 0], [3.2, 1.25], [4.32, 1.25], [4.32, 0], [3.47, 0], [3.2, 0]]]}}
]
}
data_obj_geojson = alt.Data(values=obj_geojson, format=alt.DataFormat(property="features"))
data_obj_geojson
The label for each objects location is stored within the ``properties`` dictionary. To access these values
you can specify a nested variable name (here ``properties.location``) within the color
channel encoding. Here we change the coloring encoding to be based on this location label,
and apply a ``magma`` color scheme instead of the default one.
The ``:O`` suffix indicates that we want Altair to treat these values as ordinal,
and you can read more about it in the :ref:`encoding-data-types` page.
for the ordinal structured data.
.. altair-plot::
alt.Chart(data_obj_geojson, title="Vega-Altair - ordinal scale").mark_geoshape().encode(
alt.Color("properties.location:O").scale(scheme='magma')
).project(type="identity", reflectY=True)
.. _spatial-data-remote-geojson:
GeoJSON File by URL
^^^^^^^^^^^^^^^^^^^
Altair can load GeoJSON resources directly from a web URL. Here we use
an example from geojson.xyz. As is explained in :ref:`spatial-data-inline-geojson`,
we specify ``features`` as
the value for the ``property`` parameter in the ``alt.DataFormat()`` object
and prepend the attribute we want to plot (``continent``)
with the name of the nested dictionary where the
information of each geometry is stored (``properties``).
.. altair-plot::
:output: repr
url_geojson = "https://d2ad6b4ur7yvpq.cloudfront.net/naturalearth-3.3.0/ne_110m_admin_0_countries.geojson"
data_url_geojson = alt.Data(url=url_geojson, format=alt.DataFormat(property="features"))
data_url_geojson
.. altair-plot::
alt.Chart(data_url_geojson).mark_geoshape().encode(color='properties.continent:N')
.. _spatial-data-inline-topojson:
Inline TopoJSON Object
^^^^^^^^^^^^^^^^^^^^^^
TopoJSON is an extension of GeoJSON, where the geometry of the features
are referred to from a top-level object named arcs. Each shared arc is
only stored once to reduce the size of the data. A TopoJSON file object can contain
multiple objects (eg. boundary border and province border). When
defining a TopoJSON object for Altair we specify the ``topojson``
data format type and the name of the object we like to visualize using the
``feature`` parameter. Here the name of this object key is ``MY_DATA``,
but this differs in each dataset.
.. altair-plot::
:output: repr
obj_topojson = {
"arcs": [
[[1.0, 1.0], [0.0, 1.0], [0.0, 0.0], [1.0, 0.0]],
[[1.0, 0.0], [2.0, 0.0], [2.0, 1.0], [1.0, 1.0]],
[[1.0, 1.0], [1.0, 0.0]],
],
"objects": {
"MY_DATA": {
"geometries": [
{"arcs": [[-3, 0]], "properties": {"name": "abc"}, "type": "Polygon"},
{"arcs": [[1, 2]], "properties": {"name": "def"}, "type": "Polygon"},
],
"type": "GeometryCollection",
}
},
"type": "Topology",
}
data_obj_topojson = alt.Data(
values=obj_topojson, format=alt.DataFormat(feature="MY_DATA", type="topojson")
)
data_obj_topojson
.. altair-plot::
alt.Chart(data_obj_topojson).mark_geoshape(
).encode(
color="properties.name:N"
).project(
type='identity', reflectY=True
)
.. _spatial-data-remote-topojson:
TopoJSON File by URL
^^^^^^^^^^^^^^^^^^^^
Altair can load TopoJSON resources directly from a web URL. As
explained in :ref:`spatial-data-inline-topojson`, we have to use the
``feature`` parameter to specify the object name (here ``boroughs``) and
define the type of data as ``topjoson`` in the ``alt.DataFormat()`` object.
.. altair-plot::
:output: repr
from vega_datasets import data
url_topojson = data.londonBoroughs.url
data_url_topojson = alt.Data(
url=url_topojson, format=alt.DataFormat(feature="boroughs", type="topojson")
)
data_url_topojson
Note: There also exist a shorthand to extract the objects from a
topojson file if this file is accessible by URL:
``alt.topo_feature(url=url_topojson, feature="boroughs")``
We color encode the Boroughs by there names as they are stored as an
unique identifier (``id``). We use a ``symbolLimit`` of 33 in two
columns to display all entries in the legend
and change the color scheme to have more distinct colors.
We also add a tooltip which shows the name of the borough
as we hover over it with the mouse.
.. altair-plot::
alt.Chart(data_url_topojson, title="London-Boroughs").mark_geoshape(
tooltip=True
).encode(
alt.Color("id:N").scale(scheme='tableau20').legend(columns=2, symbolLimit=33)
)
Similar to the ``feature`` option, there also exists the ``mesh``
parameter. This parameter extracts a named TopoJSON object set.
Unlike the feature option, the corresponding geo data is returned as
a single, unified mesh instance, not as individual GeoJSON features.
Extracting a mesh is useful for more efficiently drawing borders
or other geographic elements that you do not need to associate with
specific regions such as individual countries, states or counties.
Here below we draw the same Boroughs of London, but now as mesh only.
Note: you have to explicitly define ``filled=False`` to draw multi(lines)
without fill color.
.. altair-plot::
from vega_datasets import data
url_topojson = data.londonBoroughs.url
data_url_topojson_mesh = alt.Data(
url=url_topojson, format=alt.DataFormat(mesh="boroughs", type="topojson")
)
alt.Chart(data_url_topojson_mesh, title="Border London-Boroughs").mark_geoshape(
filled=False
)
.. _spatial-data-nested-geojson:
Nested GeoJSON Objects
^^^^^^^^^^^^^^^^^^^^^^
GeoJSON data can also be nested within another dataset. In this case it
is possible to use the ``shape`` encoding channel in combination with the
``:G`` suffix to visualize the nested features as GeoJSON objects.
In the following example the GeoJSON object are nested within ``geo``
in the list of dictionaries:
.. altair-plot::
nested_features = [
{"color": "#F3C14F", "geo": {"type": "Feature", "geometry": {"type": "Polygon", "coordinates": [[[1.45, 3.75], [1.45, 0], [0, 0], [1.45, 3.75]]]}}},
{"color": "#4098D7", "geo": {"type": "Feature", "geometry": {"type": "Polygon", "coordinates": [[[1.45, 0], [1.45, 3.75], [2.57, 3.75], [2.57, 0], [2.33, 0], [1.45, 0]]]}}},
{"color": "#66B4E2", "geo": {"type": "Feature", "geometry": {"type": "Polygon", "coordinates": [[[2.33, 0], [2.33, 2.5], [3.47, 2.5], [3.47, 0], [3.2, 0], [2.57, 0], [2.33, 0]]]}}},
{"color": "#A9CDE0", "geo": {"type": "Feature", "geometry": {"type": "Polygon", "coordinates": [[[3.2, 0], [3.2, 1.25], [4.32, 1.25], [4.32, 0], [3.47, 0], [3.2, 0]]]}}},
]
data_nested_features = alt.Data(values=nested_features)
alt.Chart(data_nested_features, title="Vega-Altair").mark_geoshape().encode(
shape="geo:G",
color=alt.Color("color:N").scale(None)
).project(type="identity", reflectY=True)
.. _data-projections:
Projections
^^^^^^^^^^^
For geographic data it is best to use the World Geodetic System 1984 as
its geographic coordinate reference system with units in decimal degrees.
Try to avoid putting projected data into Altair, but reproject your spatial data to
EPSG:4326 first.
If your data comes in a different projection (eg. with units in meters) and you don't
have the option to reproject the data, try using the project configuration
``(type: 'identity', reflectY': True)``. It draws the geometries without applying a projection.
.. _data-winding-order:
Winding Order
^^^^^^^^^^^^^
LineString, Polygon and MultiPolygon geometries contain coordinates in an order: lines
go in a certain direction, and polygon rings do too. The GeoJSON-like structure of the
``__geo_interface__`` recommends the right-hand rule winding order for Polygon and
MultiPolygons. Meaning that the exterior rings should be counterclockwise and interior
rings are clockwise. While it recommends the right-hand rule winding order, it does not
reject geometries that do not use the right-hand rule.
Altair does NOT follow the right-hand rule for geometries, but uses the left-hand rule.
Meaning that exterior rings should be clockwise and interior rings should be
counterclockwise.
If you face a problem regarding winding order, try to force the left-hand rule on your
data before usage in Altair using GeoPandas for example as such:
.. code:: python
from shapely.ops import orient
gdf.geometry = gdf.geometry.apply(orient, args=(-1,))
.. toctree::
:maxdepth: 1
:caption: User Guide
:hidden:
self
encodings/index
marks/index
transform/index
interactions
compound_charts
scale_resolve
times_and_dates
customization
configuration
saving_charts
.. toctree::
:maxdepth: 1
:caption: Advanced Usage
:hidden:
internals
display_frontends
custom_renderers
data_transformers
large_datasets
|