File: area.rst

package info (click to toggle)
python-altair 5.0.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,952 kB
  • sloc: python: 25,649; sh: 14; makefile: 5
file content (190 lines) | stat: -rw-r--r-- 5,927 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
.. currentmodule:: altair

.. _user-guide-area-marks:

Area
~~~~~~~~~~
``area`` represent multple data element as a single area shape.
Area marks are often used to show change over time, using either a single area or stacked areas.

Area Mark Properties
--------------------
.. altair-plot::
    :hide-code:
    :div_class: properties-example

    import altair as alt
    import pandas as pd

    interpolate_select = alt.binding_select(
        options=[
            "basis",
            "cardinal",
            "catmull-rom",
            "linear",
            "monotone",
            "natural",
            "step",
            "step-after",
            "step-before",
        ],
        name="interpolate",
    )
    interpolate_var = alt.param(bind=interpolate_select, value="linear")

    tension_slider = alt.binding_range(min=0, max=1, step=0.05, name="tension")
    tension_var = alt.param(bind=tension_slider, value=0)

    source = pd.DataFrame({"u": [1, 2, 3, 4, 5, 6], "v": [28, 55, 42, 34, 36, 38]})

    alt.Chart(source).mark_area(interpolate=interpolate_var, tension=tension_var).encode(
        x="u", y="v"
    ).add_params(interpolate_var, tension_var)


An ``area`` mark definition can contain any :ref:`standard mark properties <mark-properties>`
and the following line interpolation as well as line and point overlay properties:

.. altair-object-table:: altair.MarkDef
   :properties: align baseline orient interpolate tension line point

Examples
--------

Area Chart
^^^^^^^^^^
Using ``area`` mark with one temporal or ordinal field (typically on ``x``) and
one quantitative field (typically on ``y``) produces an area chart. For example,
the following area chart shows a number of unemployment people in the US over time.

.. altair-plot::
    import altair as alt
    from vega_datasets import data

    source = data.unemployment_across_industries.url

    alt.Chart(source).mark_area().encode(
        x="yearmonth(date):T",
        y="sum(count):Q",
    ).properties(width=300, height=200)


Area Chart with Overlaying Lines and Point Markers
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

By setting ``line`` and ``point`` properties of the mark definition
to ``true`` or an object defining a property of the overlaying point marks, we can overlay line and point markers on top of area.

.. altair-plot::
    import altair as alt
    from vega_datasets import data
    from altair.expr import datum

    source = data.stocks.url

    alt.Chart(source).mark_area(line=True, point=True).encode(
        x="date:T",
        y="price:Q",
    ).transform_filter(
        alt.datum.symbol == "GOOG"
    )

Instead of using a single color as the fill color of the area, we can set it to a gradient.
In this example, we are also customizing the overlay. For more information about gradient options see the `Vega-Lite Gradient documentation
<https://vega.github.io/vega-lite/docs/gradient.html>`_.

.. altair-plot::
    import altair as alt
    from vega_datasets import data

    source = data.stocks()

    alt.Chart(source).transform_filter(alt.datum.symbol == "GOOG").mark_area(
        line={"color": "darkgreen"},
        color=alt.Gradient(
            gradient="linear",
            stops=[
                alt.GradientStop(color="white", offset=0),
                alt.GradientStop(color="darkgreen", offset=1),
            ],
            x1=1,
            x2=1,
            y1=1,
            y2=0,
        ),
    ).encode(
        alt.X("date:T"),
        alt.Y("price:Q"),
    )


Stacked Area Chart
^^^^^^^^^^^^^^^^^^
Adding a color field to area chart creates stacked area chart by default. For example, here we split the area chart by industry.

.. altair-plot::
    import altair as alt
    from vega_datasets import data

    source = data.unemployment_across_industries.url

    alt.Chart(source).mark_area().encode(
        alt.X("yearmonth(date):T").axis(format="%Y", domain=False, tickSize=0),
        alt.Y("sum(count):Q"),
        alt.Color("series:N").scale(scheme="category20b"),
    )


Normalized Stacked Area Chart
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

You can also create a normalized stacked area chart by setting ``stack`` to ``"normalize"`` in the encoding channel. Here we can easily see the percentage of unemployment across industries.

.. altair-plot::
    import altair as alt
    from vega_datasets import data

    source = data.unemployment_across_industries.url

    alt.Chart(source).mark_area().encode(
        alt.X("yearmonth(date):T").axis(format="%Y", domain=False, tickSize=0),
        alt.Y("sum(count):Q").stack("normalize"),
        alt.Color("series:N").scale(scheme="category20b"),
    )


Steamgraph
^^^^^^^^^^^

We can also shift the stacked area chart's baseline to center and produces a streamgraph by setting ``stack`` to ``"center"`` in the encoding channel.
Adding the ``interactive`` method allows for zooming and panning the x-scale.

.. altair-plot::
    import altair as alt
    from vega_datasets import data

    source = data.unemployment_across_industries.url

    alt.Chart(source).mark_area().encode(
        alt.X("yearmonth(date):T").axis(format="%Y", domain=False, tickSize=0),
        alt.Y("sum(count):Q").stack("center").axis(None),
        alt.Color("series:N").scale(scheme="category20b"),
    ).interactive()


Ranged Area
^^^^^^^^^^^
Specifying ``X2`` or ``Y2`` for the quantitative axis of area marks produce ranged areas. For example, we can use ranged area to highlight the mininium and maximum measured temperatures over time, aggregated by ``monthdate``.

.. altair-plot::
    import altair as alt
    from vega_datasets import data

    source = data.seattle_weather()

    alt.Chart(source).mark_area(opacity=0.7).encode(
        alt.X("monthdate(date):T").title("Date"),
        alt.Y("mean(temp_max):Q").title("Daily Temperature Range (C)"),
        alt.Y2("mean(temp_min):Q"),
    ).properties(width=600, height=300)