1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
.. currentmodule:: altair
.. _user-guide-line-marks:
Line
~~~~
The ``line`` mark represents the data points stored in a field with a line connecting all of these points. Line marks are commonly used to depict trajectories or change over time. Unlike most other marks that represent one data element per mark, one line mark represents multiple data element as a single line, akin to ``area`` and ``trail``.
Note: For line segments that connect (x,y) positions to (x2,y2) positions, please use ``rule`` marks. For continuous lines with varying size, please use ``trail`` marks.
Line Mark Properties
--------------------
.. altair-plot::
:hide-code:
:div_class: properties-example
import altair as alt
import pandas as pd
interpolate_select = alt.binding_select(
options=[
"basis",
"cardinal",
"catmull-rom",
"linear",
"monotone",
"natural",
"step",
"step-after",
"step-before",
],
name="interpolate",
)
interpolate_var = alt.param(bind=interpolate_select, value="linear")
tension_slider = alt.binding_range(min=0, max=1, step=0.05, name="tension")
tension_var = alt.param(bind=tension_slider, value=0)
strokeWidth_slider = alt.binding_range(min=0, max=10, step=0.5, name="strokeWidth")
strokeWidth_var = alt.param(bind=strokeWidth_slider, value=2)
strokeCap_select = alt.binding_select(
options=["butt", "round", "square"],
name="strokeCap",
)
strokeCap_var = alt.param(bind=strokeCap_select, value="butt")
strokeDash_select = alt.binding_select(
options=[[1, 0], [8, 8], [8, 4], [4, 4], [4, 2], [2, 1], [1, 1]],
name="strokeDash",
)
strokeDash_var = alt.param(bind=strokeDash_select, value=[1, 0])
source = pd.DataFrame({"u": [1, 2, 3, 4, 5, 6], "v": [28, 55, 42, 34, 36, 38]})
alt.Chart(source).mark_line(
interpolate=interpolate_var,
tension=tension_var,
strokeWidth=strokeWidth_var,
strokeCap=strokeCap_var,
strokeDash=strokeDash_var,
).encode(x="u", y="v").add_params(
interpolate_var, tension_var, strokeWidth_var, strokeCap_var, strokeDash_var
)
A ``line`` mark definition can contain any :ref:`standard mark properties <mark-properties>`
and the following line interpolation and point overlay properties:
.. altair-object-table:: altair.MarkDef
:properties: orient interpolate tension point
Examples
--------
Line Chart
^^^^^^^^^^
Using line with one temporal or ordinal field (typically on ``x``) and another quantitative field (typically on ``y``) produces a simple line chart with a single line.
.. altair-plot::
import altair as alt
from altair import datum
from vega_datasets import data
source = data.stocks()
alt.Chart(source).mark_line().encode(
x="date",
y="price",
).transform_filter(datum.symbol == "GOOG")
We can add create multiple lines by grouping along different attributes, such as ``color`` or ``detail``.
Multi-series Colored Line Chart
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adding a field to a mark property channel such as ``color`` groups data points into different series, producing a multi-series colored line chart.
.. altair-plot::
import altair as alt
from vega_datasets import data
source = data.stocks()
alt.Chart(source).mark_line().encode(
x="date",
y="price",
color="symbol",
)
We can further apply selection to highlight a certain line on hover.
.. altair-plot::
import altair as alt
from vega_datasets import data
source = data.stocks()
highlight = alt.selection_point(
on="mouseover", fields=["symbol"], nearest=True
)
base = alt.Chart(source).encode(
x="date:T",
y="price:Q",
color="symbol:N"
)
points = base.mark_circle().encode(
opacity=alt.value(0)
).add_params(
highlight
).properties(
width=600
)
lines = base.mark_line().encode(
size=alt.condition(~highlight, alt.value(1), alt.value(3))
)
points + lines
Multi-series Line Chart with Varying Dashes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adding a field to ``strokeDash`` also produces a multi-series line chart.
.. altair-plot::
import altair as alt
from vega_datasets import data
source = data.stocks()
alt.Chart(source).mark_line().encode(
x="date",
y="price",
strokeDash="symbol",
)
We can also use line grouping to create a line chart that has multiple parts with varying styles.
.. altair-plot::
import altair as alt
import pandas as pd
source = pd.DataFrame({
"a": ["A", "B", "D", "E", "E", "G", "H"],
"b": [28, 55, 91, 81, 81, 19, 87],
"predicted": [False, False, False, False, True, True, True]
})
alt.Chart(source).mark_line().encode(
x="a:O",
y="b:Q",
strokeDash="predicted:N"
)
Multi-series Line Chart with the Detail Channel
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
To group lines by a field without mapping the field to any visual properties, we can map the field to the ``detail`` channel to create a multi-series line chart with the same color.
.. altair-plot::
import altair as alt
from vega_datasets import data
source = data.stocks()
alt.Chart(source).mark_line().encode(
x="date",
y="price",
detail="symbol",
)
The same method can be used to group lines for a ranged dot plot.
.. altair-plot::
import altair as alt
from vega_datasets import data
source = data.countries()
base = alt.Chart(source).encode(
alt.X("life_expect:Q")
.scale(zero=False)
.title("Life Expectancy (years)"),
alt.Y("country:N")
.axis(offset=5, ticks=False, minExtent=70, domain=False)
.title("Country")
).transform_filter(
alt.FieldOneOfPredicate(field="country", oneOf=["China", "India", "United States", "Indonesia", "Brazil"])
)
line = base.mark_line().encode(
detail="country",
color=alt.value("#db646f")
).transform_filter(
alt.FieldOneOfPredicate(field="year", oneOf=[1995, 2000])
)
point = base.mark_point(filled=True).encode(
alt.Color("year").scale(range=["#e6959c", "#911a24"], domain=[1995, 2000]),
size=alt.value(100),
opacity=alt.value(1),
)
line + point
Line Chart with Point Markers
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
By setting the ``point`` property of the mark definition to ``True`` or an object defining a property of the overlaying point marks, we can overlay point markers on top of a line.
.. altair-plot::
import altair as alt
from vega_datasets import data
source = data.stocks()
alt.Chart(source).mark_line(point=True).encode(
x="year(date)",
y="mean(price):Q",
color="symbol:N"
)
This is equivalent to adding another layer of filled point marks.
Note that the overlay point marks have ``opacity`` = 1 by default (instead of semi-transparent like normal point marks).
Here we create stroked points by setting ``filled`` to ``False`` and ``fill`` to ``"white"``.
.. altair-plot::
import altair as alt
from vega_datasets import data
source = data.stocks()
alt.Chart(source).mark_line(
point=alt.OverlayMarkDef(filled=False, fill="white")
).encode(
x="year(date)",
y="mean(price):Q",
color="symbol:N"
)
Connected Scatter Plot (Line Chart with Custom Path)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The line’s path (order of points in the line) is determined by data values on the temporal/ordinal field by default. However, a field can be mapped to the ``order`` channel for determining a custom path.
For example, to show a pattern of data change over time between gasoline price and average miles driven per capita we use ``order`` channel to sort the points in the line by time field (year). In this example, we also use the ``point`` property to overlay point marks over the line marks to highlight each data point.
.. altair-plot::
import altair as alt
from vega_datasets import data
source = data.driving()
alt.Chart(source).mark_line(point=True).encode(
alt.X("miles").scale(zero=False),
alt.Y("gas").scale(zero=False),
order="year",
)
Line interpolation
^^^^^^^^^^^^^^^^^^
The ``interpolate`` property of a mark definition can be used to change line interpolation method. For example, we can set ``interpolate`` to ``"monotone"``.
.. altair-plot::
import altair as alt
from vega_datasets import data
source = data.stocks()
alt.Chart(source).mark_line(interpolate="monotone").encode(
x="date",
y="price",
).transform_filter(
alt.datum.symbol == "GOOG"
)
We can also set ``interpolate`` to ``"step-after"`` to create a step-chart.
.. altair-plot::
import altair as alt
from vega_datasets import data
source = data.stocks()
alt.Chart(source).mark_line(interpolate="step-after").encode(
x="date",
y="price"
).transform_filter(
alt.datum.symbol == "GOOG"
)
Geo Line
^^^^^^^^
By mapping geographic coordinate data to ``longitude`` and ``latitude`` channels of a corresponding projection, we can draw lines through geographic points.
.. altair-plot::
import altair as alt
from vega_datasets import data
import pandas as pd
airports = data.airports.url
flights_airport = data.flights_airport.url
states = alt.topo_feature(data.us_10m.url, feature="states")
lookup_data = alt.LookupData(
airports, key="iata", fields=["state", "latitude", "longitude"]
)
source = pd.DataFrame({
"airport": ["SEA", "SFO", "LAX", "LAS", "DFW", "DEN", "ORD", "JFK"],
"order": [1, 2, 3, 4, 5, 6, 7, 8],
})
background = alt.Chart(states).mark_geoshape(
fill="lightgray",
stroke="white"
).properties(
width=750,
height=500,
).project("albersUsa")
line = alt.Chart(source).mark_line().encode(
latitude="latitude:Q",
longitude="longitude:Q",
order="order"
).transform_lookup(
lookup="airport",
from_=lookup_data
)
background + line
|