1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
.. currentmodule:: altair
.. _user-guide-point-marks:
Point
~~~~~
``point`` mark represents each data point with a symbol. Point marks are commonly used in visualizations like scatter plots.
Point Mark Properties
---------------------
.. altair-plot::
:hide-code:
:div_class: properties-example
import altair as alt
from vega_datasets import data
source = data.cars()
shape_select = alt.binding_select(
options=[
"arrow",
"circle",
"square",
"cross",
"diamond",
"triangle",
"triangle-up",
"triangle-down",
"triangle-right",
"triangle-left",
"wedge",
"stroke",
"M-1,-1H1V1H-1Z",
"M0,.5L.6,.8L.5,.1L1,-.3L.3,-.4L0,-1L-.3,-.4L-1,-.3L-.5,.1L-.6,.8L0,.5Z",
],
name="shape",
)
shape_var = alt.param(bind=shape_select, value="circle")
angle_slider = alt.binding_range(min=-360, max=360, step=1, name="angle")
angle_var = alt.param(bind=angle_slider, value=0)
size_slider = alt.binding_range(min=0, max=500, step=10, name="size")
size_var = alt.param(bind=size_slider, value=50)
strokeWidth_slider = alt.binding_range(min=0, max=10, step=0.5, name="strokeWidth")
strokeWidth_var = alt.param(bind=strokeWidth_slider, value=2)
alt.Chart(source).mark_point(
shape=shape_var,
angle=angle_var,
size=size_var,
strokeWidth=strokeWidth_var,
).encode(x="Horsepower:Q", y="Miles_per_Gallon:Q").add_params(
shape_var, angle_var, size_var, strokeWidth_var
)
A ``point`` mark definition can contain any :ref:`standard mark properties <mark-properties>`
and the following special properties:
.. altair-object-table:: altair.MarkDef
:properties: shape size
Examples
--------
Dot Plot
^^^^^^^^
Mapping a field to either only ``x`` or only ``y`` of point marks creates a dot plot.
.. altair-plot::
import altair as alt
from vega_datasets import data
source = data.movies()
alt.Chart(source).mark_point().encode(
x="IMDB_Rating:Q"
)
Scatter Plot
^^^^^^^^^^^^
Mapping fields to both the ``x`` and ``y`` channels creates a scatter plot.
.. altair-plot::
import altair as alt
from vega_datasets import data
source = data.cars()
alt.Chart(source).mark_point().encode(
x="Horsepower:Q",
y="Miles_per_Gallon:Q",
)
By default, ``point`` marks only have borders and are transparent inside. You can create a filled point by setting ``filled`` to ``True``.
.. altair-plot::
import altair as alt
from vega_datasets import data
source = data.cars()
alt.Chart(source).mark_point(filled=True).encode(
x="Horsepower:Q",
y="Miles_per_Gallon:Q",
)
Bubble Plot
^^^^^^^^^^^
By mapping a third field to the ``size`` channel in the scatter plot, we can create a bubble plot instead.
.. altair-plot::
import altair as alt
from vega_datasets import data
source = data.cars()
alt.Chart(source).mark_point().encode(
x="Horsepower:Q",
y="Miles_per_Gallon:Q",
size="Acceleration:Q",
)
Scatter Plot with Color and/or Shape
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Fields can also be encoded in the scatter plot using the ``color`` or ``shape`` channels. For example, this specification encodes the field ``Origin`` with both ``color`` and ``shape``.
.. altair-plot::
import altair as alt
from vega_datasets import data
source = data.cars()
alt.Chart(source).mark_point().encode(
alt.X("Miles_per_Gallon:Q").scale(zero=False),
alt.Y("Horsepower:Q").scale(zero=False),
color="Origin:N",
shape="Origin:N",
)
Dot Plot with Jittering
^^^^^^^^^^^^^^^^^^^^^^^
To jitter points on a discrete scale, you can add a random offset:
.. altair-plot::
import altair as alt
from vega_datasets import data
source = data.cars()
alt.Chart(source).mark_point().encode(
x="Horsepower:Q",
y="Cylinders:O",
yOffset="random:Q",
).transform_calculate(
random="random()"
).properties(
height=alt.Step(50)
)
Wind Vector Example
^^^^^^^^^^^^^^^^^^^
We can also use point mark with ``wedge`` as ``shape`` and ``angle`` encoding to create a wind vector map. Other shape options are:
``"circle"``, ``"square"``, ``"cross"``, ``"diamond"``, ``"triangle-up"``, ``"triangle-down"``, ``"triangle-right"``, ``"triangle-left"``, ``"stroke"``, ``"arrow"``, and ``"triangle"``.
.. altair-plot::
import altair as alt
from vega_datasets import data
source = data.windvectors()
alt.Chart(source).mark_point(shape="wedge", filled=True).encode(
latitude="latitude",
longitude="longitude",
color=alt.Color("dir").scale(domain=[0, 360], scheme="rainbow").legend(None),
angle=alt.Angle("dir").scale(domain=[0, 360], range=[180, 540]),
size=alt.Size("speed").scale(rangeMax=500),
).project("equalEarth")
Geo Point
^^^^^^^^^
By mapping geographic coordinate data to ``longitude`` and ``latitude`` channels of a corresponding projection, we can visualize geographic points. The example below shows major airports in the US.
.. altair-plot::
import altair as alt
from vega_datasets import data
airports = data.airports()
states = alt.topo_feature(data.us_10m.url, feature="states")
# US states background
background = alt.Chart(states).mark_geoshape(
fill="lightgray",
stroke="white"
).properties(
width=500,
height=300,
).project("albersUsa")
# airport positions on background
points = alt.Chart(airports).mark_circle(
size=10,
color="steelblue",
).encode(
longitude="longitude:Q",
latitude="latitude:Q",
tooltip=["name", "city", "state"],
)
background + points
|