1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
|
.. currentmodule:: altair
.. _user-guide-calculate-transform:
Calculate
~~~~~~~~~
The calculate transform allows the user to define new fields in the dataset
which are calculated from other fields using an expression syntax.
As a simple example, here we take data with a simple input sequence, and compute
a some trigonometric quantities:
.. altair-plot::
import altair as alt
import pandas as pd
data = pd.DataFrame({'t': range(101)})
alt.Chart(data).mark_line().encode(
x='x:Q',
y='y:Q',
order='t:Q'
).transform_calculate(
x='cos(datum.t * PI / 50)',
y='sin(datum.t * PI / 25)'
)
Each argument within ``transform_calculate`` is a `Vega expression`_ string,
which is a well-defined set of javascript-style operations that can be used
to calculate a new field from an existing one.
To streamline building these Vega expressions in Python, Altair provides the
:mod:`expr` module which provides constants and functions to allow
these expressions to be constructed with Python syntax; for example:
.. altair-plot::
alt.Chart(data).mark_line().encode(
x='x:Q',
y='y:Q',
order='t:Q'
).transform_calculate(
x=alt.expr.cos(alt.datum.t * alt.expr.PI / 50),
y=alt.expr.sin(alt.datum.t * alt.expr.PI / 25)
)
Altair expressions are designed to output valid Vega expressions. The benefit of
using them is that proper syntax is ensured by the Python interpreter, and tab
completion of the :mod:`~expr` submodule can be used to explore the
available functions and constants.
These expressions can also be used when constructing a
:ref:`user-guide-filter-transform`, as we shall see next.
Transform Options
^^^^^^^^^^^^^^^^^
The :meth:`~Chart.transform_calculate` method is built on the :class:`~CalculateTransform`
class, which has the following options:
.. altair-object-table:: altair.CalculateTransform
.. _Vega expression: https://vega.github.io/vega/docs/expressions/
|