File: density.rst

package info (click to toggle)
python-altair 5.0.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,952 kB
  • sloc: python: 25,649; sh: 14; makefile: 5
file content (60 lines) | stat: -rw-r--r-- 1,510 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
.. currentmodule:: altair

.. _user-guide-density-transform:

Density
~~~~~~~
The density transform performs one-dimensional
`kernel density estimation <https://en.wikipedia.org/wiki/Kernel_density_estimation>`_
over input data and generates a new column of samples of the estimated densities.

Here is a simple example, showing the distribution of IMDB ratings from the movies
dataset:

.. altair-plot::

   import altair as alt
   from vega_datasets import data

   alt.Chart(data.movies.url).transform_density(
       'IMDB_Rating',
       as_=['IMDB_Rating', 'density'],
   ).mark_area().encode(
       x="IMDB_Rating:Q",
       y='density:Q',
   )

The density can also be computed on a per-group basis, by specifying the ``groupby``
argument. Here we split the above density computation across movie genres:

.. altair-plot::

   import altair as alt
   from vega_datasets import data

   alt.Chart(
       data.movies.url,
       width=120,
       height=80
   ).transform_filter(
       'isValid(datum.Major_Genre)'
   ).transform_density(
       'IMDB_Rating',
       groupby=['Major_Genre'],
       as_=['IMDB_Rating', 'density'],
       extent=[1, 10],
   ).mark_area().encode(
       x="IMDB_Rating:Q",
       y='density:Q',
   ).facet(
       'Major_Genre:N',
       columns=4
   )


Transform Options
^^^^^^^^^^^^^^^^^
The :meth:`~Chart.transform_density` method is built on the
:class:`~DensityTransform` class, which has the following options:

.. altair-object-table:: altair.DensityTransform