1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
import types
import numpy as np
import pandas as pd
import pytest
import altair as alt
from altair.utils.core import parse_shorthand, update_nested, infer_encoding_types
from altair.utils.core import infer_dtype
FAKE_CHANNELS_MODULE = '''
"""Fake channels module for utility tests."""
from altair.utils import schemapi
class FieldChannel:
def __init__(self, shorthand, **kwargs):
kwargs['shorthand'] = shorthand
return super(FieldChannel, self).__init__(**kwargs)
class ValueChannel:
def __init__(self, value, **kwargs):
kwargs['value'] = value
return super(ValueChannel, self).__init__(**kwargs)
class X(FieldChannel, schemapi.SchemaBase):
_schema = {}
_encoding_name = "x"
class XValue(ValueChannel, schemapi.SchemaBase):
_schema = {}
_encoding_name = "x"
class Y(FieldChannel, schemapi.SchemaBase):
_schema = {}
_encoding_name = "y"
class YValue(ValueChannel, schemapi.SchemaBase):
_schema = {}
_encoding_name = "y"
class StrokeWidth(FieldChannel, schemapi.SchemaBase):
_schema = {}
_encoding_name = "strokeWidth"
class StrokeWidthValue(ValueChannel, schemapi.SchemaBase):
_schema = {}
_encoding_name = "strokeWidth"
'''
@pytest.mark.parametrize(
"value,expected_type",
[
([1, 2, 3], "integer"),
([1.0, 2.0, 3.0], "floating"),
([1, 2.0, 3], "mixed-integer-float"),
(["a", "b", "c"], "string"),
(["a", "b", np.nan], "mixed"),
],
)
def test_infer_dtype(value, expected_type):
assert infer_dtype(value) == expected_type
def test_parse_shorthand():
def check(s, **kwargs):
assert parse_shorthand(s) == kwargs
check("")
# Fields alone
check("foobar", field="foobar")
check(r"blah\:(fd ", field=r"blah\:(fd ")
# Fields with type
check("foobar:quantitative", type="quantitative", field="foobar")
check("foobar:nominal", type="nominal", field="foobar")
check("foobar:ordinal", type="ordinal", field="foobar")
check("foobar:temporal", type="temporal", field="foobar")
check("foobar:geojson", type="geojson", field="foobar")
check("foobar:Q", type="quantitative", field="foobar")
check("foobar:N", type="nominal", field="foobar")
check("foobar:O", type="ordinal", field="foobar")
check("foobar:T", type="temporal", field="foobar")
check("foobar:G", type="geojson", field="foobar")
# Fields with aggregate and/or type
check("average(foobar)", field="foobar", aggregate="average")
check("min(foobar):temporal", type="temporal", field="foobar", aggregate="min")
check("sum(foobar):Q", type="quantitative", field="foobar", aggregate="sum")
# check that invalid arguments are not split-out
check("invalid(blah)", field="invalid(blah)")
check(r"blah\:invalid", field=r"blah\:invalid")
check(r"invalid(blah)\:invalid", field=r"invalid(blah)\:invalid")
# check parsing in presence of strange characters
check(
r"average(a b\:(c\nd):Q",
aggregate="average",
field=r"a b\:(c\nd",
type="quantitative",
)
# special case: count doesn't need an argument
check("count()", aggregate="count", type="quantitative")
check("count():O", aggregate="count", type="ordinal")
# time units:
check("month(x)", field="x", timeUnit="month", type="temporal")
check("year(foo):O", field="foo", timeUnit="year", type="ordinal")
check("date(date):quantitative", field="date", timeUnit="date", type="quantitative")
check(
"yearmonthdate(field)", field="field", timeUnit="yearmonthdate", type="temporal"
)
def test_parse_shorthand_with_data():
def check(s, data, **kwargs):
assert parse_shorthand(s, data) == kwargs
data = pd.DataFrame(
{
"x": [1, 2, 3, 4, 5],
"y": ["A", "B", "C", "D", "E"],
"z": pd.date_range("2018-01-01", periods=5, freq="D"),
"t": pd.date_range("2018-01-01", periods=5, freq="D").tz_localize("UTC"),
}
)
check("x", data, field="x", type="quantitative")
check("y", data, field="y", type="nominal")
check("z", data, field="z", type="temporal")
check("t", data, field="t", type="temporal")
check("count(x)", data, field="x", aggregate="count", type="quantitative")
check("count()", data, aggregate="count", type="quantitative")
check("month(z)", data, timeUnit="month", field="z", type="temporal")
check("month(t)", data, timeUnit="month", field="t", type="temporal")
def test_parse_shorthand_all_aggregates():
aggregates = alt.Root._schema["definitions"]["AggregateOp"]["enum"]
for aggregate in aggregates:
shorthand = "{aggregate}(field):Q".format(aggregate=aggregate)
assert parse_shorthand(shorthand) == {
"aggregate": aggregate,
"field": "field",
"type": "quantitative",
}
def test_parse_shorthand_all_timeunits():
timeUnits = []
for loc in ["Local", "Utc"]:
for typ in ["Single", "Multi"]:
defn = loc + typ + "TimeUnit"
timeUnits.extend(alt.Root._schema["definitions"][defn]["enum"])
for timeUnit in timeUnits:
shorthand = "{timeUnit}(field):Q".format(timeUnit=timeUnit)
assert parse_shorthand(shorthand) == {
"timeUnit": timeUnit,
"field": "field",
"type": "quantitative",
}
def test_parse_shorthand_window_count():
shorthand = "count()"
dct = parse_shorthand(
shorthand,
parse_aggregates=False,
parse_window_ops=True,
parse_timeunits=False,
parse_types=False,
)
assert dct == {"op": "count"}
def test_parse_shorthand_all_window_ops():
window_ops = alt.Root._schema["definitions"]["WindowOnlyOp"]["enum"]
aggregates = alt.Root._schema["definitions"]["AggregateOp"]["enum"]
for op in window_ops + aggregates:
shorthand = "{op}(field)".format(op=op)
dct = parse_shorthand(
shorthand,
parse_aggregates=False,
parse_window_ops=True,
parse_timeunits=False,
parse_types=False,
)
assert dct == {"field": "field", "op": op}
def test_update_nested():
original = {"x": {"b": {"foo": 2}, "c": 4}}
update = {"x": {"b": {"foo": 5}, "d": 6}, "y": 40}
output = update_nested(original, update, copy=True)
assert output is not original
assert output == {"x": {"b": {"foo": 5}, "c": 4, "d": 6}, "y": 40}
output2 = update_nested(original, update)
assert output2 is original
assert output == output2
@pytest.fixture
def channels():
channels = types.ModuleType("channels")
exec(FAKE_CHANNELS_MODULE, channels.__dict__)
return channels
def _getargs(*args, **kwargs):
return args, kwargs
def test_infer_encoding_types(channels):
expected = {
"x": channels.X("xval"),
"y": channels.YValue("yval"),
"strokeWidth": channels.StrokeWidthValue(value=4),
}
# All positional args
args, kwds = _getargs(
channels.X("xval"), channels.YValue("yval"), channels.StrokeWidthValue(4)
)
assert infer_encoding_types(args, kwds, channels) == expected
# All keyword args
args, kwds = _getargs(x="xval", y=alt.value("yval"), strokeWidth=alt.value(4))
assert infer_encoding_types(args, kwds, channels) == expected
# Mixed positional & keyword
args, kwds = _getargs(
channels.X("xval"), channels.YValue("yval"), strokeWidth=alt.value(4)
)
assert infer_encoding_types(args, kwds, channels) == expected
def test_infer_encoding_types_with_condition():
channels = alt.channels
args, kwds = _getargs(
size=alt.condition("pred1", alt.value(1), alt.value(2)),
color=alt.condition("pred2", alt.value("red"), "cfield:N"),
opacity=alt.condition("pred3", "ofield:N", alt.value(0.2)),
)
expected = {
"size": channels.SizeValue(
2,
condition=alt.ConditionalPredicateValueDefnumberExprRef(
value=1, test=alt.Predicate("pred1")
),
),
"color": channels.Color(
"cfield:N",
condition=alt.ConditionalPredicateValueDefGradientstringnullExprRef(
value="red", test=alt.Predicate("pred2")
),
),
"opacity": channels.OpacityValue(
0.2,
condition=alt.ConditionalPredicateMarkPropFieldOrDatumDef(
field=alt.FieldName("ofield"),
test=alt.Predicate("pred3"),
type=alt.StandardType("nominal"),
),
),
}
assert infer_encoding_types(args, kwds, channels) == expected
def test_invalid_data_type():
with pytest.raises(
ValueError, match=r'"\(fd " is not one of the valid encoding data types'
):
parse_shorthand(r"blah:(fd ")
|