File: test_mimebundle.py

package info (click to toggle)
python-altair 5.0.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,952 kB
  • sloc: python: 25,649; sh: 14; makefile: 5
file content (223 lines) | stat: -rw-r--r-- 6,990 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import pytest

import altair as alt
from altair.utils.mimebundle import spec_to_mimebundle

try:
    import altair_saver  # noqa: F401
except ImportError:
    altair_saver = None

try:
    import vl_convert as vlc  # noqa: F401
except ImportError:
    vlc = None


@pytest.fixture
def vegalite_spec():
    return {
        "$schema": "https://vega.github.io/schema/vega-lite/v5.json",
        "description": "A simple bar chart with embedded data.",
        "data": {
            "values": [
                {"a": "A", "b": 28},
                {"a": "B", "b": 55},
                {"a": "C", "b": 43},
                {"a": "D", "b": 91},
                {"a": "E", "b": 81},
                {"a": "F", "b": 53},
                {"a": "G", "b": 19},
                {"a": "H", "b": 87},
                {"a": "I", "b": 52},
            ]
        },
        "mark": {"type": "bar"},
        "encoding": {
            "x": {"field": "a", "type": "ordinal"},
            "y": {"field": "b", "type": "quantitative"},
        },
    }


@pytest.fixture
def vega_spec():
    return {
        "$schema": "https://vega.github.io/schema/vega/v5.json",
        "axes": [
            {
                "aria": False,
                "domain": False,
                "grid": True,
                "gridScale": "x",
                "labels": False,
                "maxExtent": 0,
                "minExtent": 0,
                "orient": "left",
                "scale": "y",
                "tickCount": {"signal": "ceil(height/40)"},
                "ticks": False,
                "zindex": 0,
            },
            {
                "grid": False,
                "labelAlign": "right",
                "labelAngle": 270,
                "labelBaseline": "middle",
                "orient": "bottom",
                "scale": "x",
                "title": "a",
                "zindex": 0,
            },
            {
                "grid": False,
                "labelOverlap": True,
                "orient": "left",
                "scale": "y",
                "tickCount": {"signal": "ceil(height/40)"},
                "title": "b",
                "zindex": 0,
            },
        ],
        "background": "white",
        "data": [
            {
                "name": "source_0",
                "values": [
                    {"a": "A", "b": 28},
                    {"a": "B", "b": 55},
                    {"a": "C", "b": 43},
                    {"a": "D", "b": 91},
                    {"a": "E", "b": 81},
                    {"a": "F", "b": 53},
                    {"a": "G", "b": 19},
                    {"a": "H", "b": 87},
                    {"a": "I", "b": 52},
                ],
            },
            {
                "name": "data_0",
                "source": "source_0",
                "transform": [
                    {
                        "as": ["b_start", "b_end"],
                        "field": "b",
                        "groupby": ["a"],
                        "offset": "zero",
                        "sort": {"field": [], "order": []},
                        "type": "stack",
                    },
                    {
                        "expr": 'isValid(datum["b"]) && isFinite(+datum["b"])',
                        "type": "filter",
                    },
                ],
            },
        ],
        "description": "A simple bar chart with embedded data.",
        "height": 200,
        "marks": [
            {
                "encode": {
                    "update": {
                        "ariaRoleDescription": {"value": "bar"},
                        "description": {
                            "signal": '"a: " + (isValid(datum["a"]) ? datum["a"] : ""+datum["a"]) + "; b: " + (format(datum["b"], ""))'
                        },
                        "fill": {"value": "#4c78a8"},
                        "width": {"signal": "max(0.25, bandwidth('x'))"},
                        "x": {"field": "a", "scale": "x"},
                        "y": {"field": "b_end", "scale": "y"},
                        "y2": {"field": "b_start", "scale": "y"},
                    }
                },
                "from": {"data": "data_0"},
                "name": "marks",
                "style": ["bar"],
                "type": "rect",
            }
        ],
        "padding": 5,
        "scales": [
            {
                "domain": {"data": "data_0", "field": "a", "sort": True},
                "name": "x",
                "paddingInner": 0.1,
                "paddingOuter": 0.05,
                "range": {"step": {"signal": "x_step"}},
                "type": "band",
            },
            {
                "domain": {"data": "data_0", "fields": ["b_start", "b_end"]},
                "name": "y",
                "nice": True,
                "range": [{"signal": "height"}, 0],
                "type": "linear",
                "zero": True,
            },
        ],
        "signals": [
            {"name": "x_step", "value": 20},
            {
                "name": "width",
                "update": "bandspace(domain('x').length, 0.1, 0.05) * x_step",
            },
        ],
        "style": "cell",
    }


@pytest.mark.save_engine
@pytest.mark.parametrize("engine", ["vl-convert", "altair_saver", None])
def test_vegalite_to_vega_mimebundle(engine, vegalite_spec, vega_spec):
    if engine == "vl-convert" and vlc is None:
        pytest.skip("vl_convert not importable; cannot run mimebundle tests")
    elif engine == "altair_saver" and altair_saver is None:
        pytest.skip("altair_saver not importable; cannot run mimebundle tests")
    elif vlc is None and altair_saver is None:
        pytest.skip(
            "Neither altair_saver nor vl_convert are importable;"
            + " cannot run mimebundle tests"
        )

    bundle = spec_to_mimebundle(
        spec=vegalite_spec,
        format="vega",
        mode="vega-lite",
        vega_version=alt.VEGA_VERSION,
        vegalite_version=alt.VEGALITE_VERSION,
        vegaembed_version=alt.VEGAEMBED_VERSION,
        engine=engine,
    )

    assert bundle == {"application/vnd.vega.v5+json": vega_spec}


def test_spec_to_vegalite_mimebundle(vegalite_spec):
    bundle = spec_to_mimebundle(
        spec=vegalite_spec,
        mode="vega-lite",
        format="vega-lite",
        vegalite_version=alt.VEGALITE_VERSION,
    )
    assert bundle == {"application/vnd.vegalite.v5+json": vegalite_spec}


def test_spec_to_vega_mimebundle(vega_spec):
    # ValueError: mode must be 'vega-lite'
    with pytest.raises(ValueError):
        spec_to_mimebundle(
            spec=vega_spec,
            mode="vega",
            format="vega",
            vega_version=alt.VEGA_VERSION,
        )


def test_spec_to_json_mimebundle():
    bundle = spec_to_mimebundle(
        spec=vegalite_spec,
        mode="vega-lite",
        format="json",
    )
    assert bundle == {"application/json": vegalite_spec}