1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
|
# coding: utf-8
"""
Amber Electric Public API
Amber is an Australian-based electricity retailer that pass through the real-time wholesale price of energy. Because of Amber's wholesale power prices, you can save hundreds of dollars a year by automating high power devices like air-conditioners, heat pumps and pool pumps. This Python library provides an interface to the API, allowing you to react to current and forecast prices, as well as download your historic usage.
The version of the OpenAPI document: 2.0.0
Contact: dev@amber.com.au
Generated by OpenAPI Generator (https://openapi-generator.tech)
Do not edit the class manually.
""" # noqa: E501
from __future__ import annotations
import pprint
import re # noqa: F401
import json
from datetime import date, datetime
from typing import Optional
from pydantic import BaseModel, Field, StrictInt, StrictStr, confloat, validator
from amberelectric.models.channel_type import ChannelType
from amberelectric.models.price_descriptor import PriceDescriptor
from amberelectric.models.spike_status import SpikeStatus
from amberelectric.models.tariff_information import TariffInformation
class BaseInterval(BaseModel):
"""
One time interval # noqa: E501
"""
type: StrictStr = Field(...)
duration: StrictInt = Field(default=..., description="Length of the interval in minutes.")
spot_per_kwh: float = Field(default=..., alias="spotPerKwh", description="NEM spot price (c/kWh). This is the price generators get paid to generate electricity, and what drives the variable component of your perKwh price - includes GST")
per_kwh: float = Field(default=..., alias="perKwh", description="Number of cents you will pay per kilowatt-hour (c/kWh) - includes GST")
var_date: date = Field(default=..., alias="date", description="Date the interval belongs to (in NEM time). This may be different to the date component of nemTime, as the last interval of the day ends at 12:00 the following day. Formatted as a ISO 8601 date")
nem_time: datetime = Field(default=..., alias="nemTime", description="The interval's NEM time. This represents the time at the end of the interval UTC+10. Formatted as a ISO 8601 time")
start_time: datetime = Field(default=..., alias="startTime", description="Start time of the interval in UTC. Formatted as a ISO 8601 time")
end_time: datetime = Field(default=..., alias="endTime", description="End time of the interval in UTC. Formatted as a ISO 8601 time")
renewables: confloat(le=100, ge=0) = Field(default=..., description="Percentage of renewables in the grid")
channel_type: ChannelType = Field(default=..., alias="channelType")
tariff_information: Optional[TariffInformation] = Field(default=None, alias="tariffInformation")
spike_status: SpikeStatus = Field(default=..., alias="spikeStatus")
descriptor: PriceDescriptor = Field(...)
__properties = ["type", "duration", "spotPerKwh", "perKwh", "date", "nemTime", "startTime", "endTime", "renewables", "channelType", "tariffInformation", "spikeStatus", "descriptor"]
@validator('duration')
def duration_validate_enum(cls, value):
"""Validates the enum"""
if value not in (5, 15, 30):
raise ValueError("must be one of enum values (5, 15, 30)")
return value
class Config:
"""Pydantic configuration"""
allow_population_by_field_name = True
validate_assignment = True
def to_str(self) -> str:
"""Returns the string representation of the model using alias"""
return pprint.pformat(self.dict(by_alias=True))
def to_json(self) -> str:
"""Returns the JSON representation of the model using alias"""
return json.dumps(self.to_dict())
@classmethod
def from_json(cls, json_str: str) -> BaseInterval:
"""Create an instance of BaseInterval from a JSON string"""
return cls.from_dict(json.loads(json_str))
def to_dict(self):
"""Returns the dictionary representation of the model using alias"""
_dict = self.dict(by_alias=True,
exclude={
},
exclude_none=True)
# override the default output from pydantic by calling `to_dict()` of tariff_information
if self.tariff_information:
_dict['tariffInformation'] = self.tariff_information.to_dict()
# set to None if tariff_information (nullable) is None
# and __fields_set__ contains the field
if self.tariff_information is None and "tariff_information" in self.__fields_set__:
_dict['tariffInformation'] = None
return _dict
@classmethod
def from_dict(cls, obj: dict) -> BaseInterval:
"""Create an instance of BaseInterval from a dict"""
if obj is None:
return None
if not isinstance(obj, dict):
return BaseInterval.parse_obj(obj)
_obj = BaseInterval.parse_obj({
"type": obj.get("type"),
"duration": obj.get("duration"),
"spot_per_kwh": obj.get("spotPerKwh"),
"per_kwh": obj.get("perKwh"),
"var_date": obj.get("date"),
"nem_time": obj.get("nemTime"),
"start_time": obj.get("startTime"),
"end_time": obj.get("endTime"),
"renewables": obj.get("renewables"),
"channel_type": obj.get("channelType"),
"tariff_information": TariffInformation.from_dict(obj.get("tariffInformation")) if obj.get("tariffInformation") is not None else None,
"spike_status": obj.get("spikeStatus"),
"descriptor": obj.get("descriptor")
})
return _obj
|