File: README.rst

package info (click to toggle)
python-amply 0.1.6-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 200 kB
  • sloc: python: 1,005; sh: 46; makefile: 5
file content (504 lines) | stat: -rw-r--r-- 14,832 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
Amply
======

.. image:: https://travis-ci.com/willu47/amply.svg?branch=master
    :target: https://travis-ci.com/willu47/amply
.. image:: https://img.shields.io/pypi/v/amply?style=plastic
     :alt: PyPI
     :target: https://pypi.org/project/amply/
.. image:: https://coveralls.io/repos/github/willu47/amply/badge.svg?branch=master
    :target: https://coveralls.io/github/willu47/amply?branch=master


Introduction
------------

Amply allows you to load and manipulate AMPL data as Python data structures.

Amply only supports a specific subset of the AMPL syntax:

* set declarations
* set data statements
* parameter declarations
* parameter data statements

Declarations and data statements
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Typically, problems expressed in AMPL consist of two parts, a *model* section and a *data* section.
Amply is only designed to parse the parameter and set statements contained within AMPL data sections.
However, in order to parse these statements correctly, information that would usually be contained
within the model section may be required. For instance, it may not be possible to infer the dimension
of a set purely from its data statement. Therefore, Amply also supports set and parameter declarations.
These do not have to be put in a separate section, they only need to occur before the corresponding
data statement.


The declaration syntax supported is extremely limited, and does not include most
elements of the AMPL programming language. The intention is that this library
is used as a way of loading data specified in an AMPL-like syntax.

Furthermore, Amply does not perform any validation on data statements.

About this document
^^^^^^^^^^^^^^^^^^^^

This document is intended as a guide to the syntax supported by Amply, and not as a general
AMPL reference manual. For more in depth coverage see the `GNU MathProg manual, Chapter 5: Model data
<http://gusek.sourceforge.net/gmpl.pdf>`_ or the following links:

* `Sets in AMPL <http://twiki.esc.auckland.ac.nz/twiki/bin/view/OpsRes/SetsInAMPL>`_
* `Parameters in AMPL <http://twiki.esc.auckland.ac.nz/twiki/bin/view/OpsRes/ParametersInAMPL>`_

Quickstart Guide
----------------

  >>> from amply import Amply

Import the class: ::

  >>> from amply import Amply

A simple set. Sets behave a lot like lists.

  >>> data = Amply("set CITIES := Auckland Wellington Christchurch;")
  >>> print data.CITIES
  <SetObject: ['Auckland', 'Wellington', 'Christchurch']>
  >>> print data['CITIES']
  <SetObject: ['Auckland', 'Wellington', 'Christchurch']>
  >>> for c in data.CITIES: print c
  ...
  Auckland
  Wellington
  Christchurch
  >>> print data.CITIES[0]
  Auckland
  >>> print len(data.CITIES)
  3


Data can be integers, reals, symbolic, or quoted strings:

  >>> data = Amply("""
  ...   set BitsNPieces := 0 3.2 -6e4 Hello "Hello, World!";
  ... """)
  >>> print data.BitsNPieces
  <SetObject: [0.0, 3.2000000000000002, -60000.0, 'Hello', 'Hello, World!']>

Sets can contain multidimensional data, but we have to declare them to be so first.

  >>> data = Amply("""
  ... set pairs dimen 2;
  ... set pairs := (1, 2) (2, 3) (3, 4);
  ... """)
  >>> print data.pairs
  <SetObject: [(1, 2), (2, 3), (3, 4)]>

Sets themselves can be multidimensional (i.e. be subscriptable):

  >>> data = Amply("""
  ... set CITIES{COUNTRIES};
  ... set CITIES[Australia] := Adelaide Melbourne Sydney;
  ... set CITIES[Italy] := Florence Milan Rome;
  ... """)
  >>> print data.CITIES['Australia']
  ['Adelaide', 'Melbourne', 'Sydney']
  >>> print data.CITIES['Italy']
  ['Florence', 'Milan', 'Rome']

Note that in the above example, the set COUNTRIES didn't actually have to exist itself.
Amply does not perform any validation on subscripts, it only uses them to figure out
how many subscripts a set has. To specify more than one, separate them by commas:

  >>> data = Amply("""
  ... set SUBURBS{COUNTRIES, CITIES};
  ... set SUBURBS[Australia, Melbourne] := Docklands 'South Wharf' Kensington;
  ... """)
  >>> print data.SUBURBS['Australia', 'Melbourne']
  ['Docklands', 'South Wharf', 'Kensington']

*Slices* can be used to simplify the entry of multi-dimensional data.

  >>> data=Amply("""
  ... set TRIPLES dimen 3;
  ... set TRIPLES := (1, 1, *) 2 3 4 (*, 2, *) 6 7 8 9 (*, *, *) (1, 1, 1);
  ... """)
  >>> print data.TRIPLES
  <SetObject: [(1, 1, 2), (1, 1, 3), (1, 1, 4), (6, 2, 7), (8, 2, 9), (1, 1, 1)]>
  >

Set data can also be specified using a matrix notation.
A '+' indicates that the pair is included in the set whereas a '-' indicates a
pair not in the set.

  >>> data=Amply("""
  ... set ROUTES dimen 2;
  ... set ROUTES : A B C D :=
  ...            E + - - +
  ...            F + + - -
  ... ;
  ... """)
  >>> print data.ROUTES
  <SetObject: [('E', 'A'), ('E', 'D'), ('F', 'A'), ('F', 'B')]>

Matrices can also be transposed:

  >>> data=Amply("""
  ... set ROUTES dimen 2;
  ... set ROUTES (tr) : E F :=
  ...                 A + +
  ...                 B - +
  ...                 C - -
  ...                 D + -
  ... ;
  ... """)
  >>> print data.ROUTES
  <SetObject: [('E', 'A'), ('F', 'A'), ('F', 'B'), ('E', 'D')]>

Matrices only specify 2d data, however they can be combined with slices
to define higher-dimensional data:

  >>> data = Amply("""
  ... set QUADS dimen 2;
  ... set QUADS :=
  ... (1, 1, *, *) : 2 3 4 :=
  ...              2 + - +
  ...              3 - + +
  ... (1, 2, *, *) : 2 3 4 :=
  ...              2 - + -
  ...              3 + - -
  ... ;
  ... """)
  >>> print data.QUADS
  <SetObject: [(1, 1, 2, 2), (1, 1, 2, 4), (1, 1, 3, 3), (1, 1, 3, 4), (1, 2, 2, 3), (1, 2, 3, 2)]>

Parameters are also supported:

  >>> data = Amply("""
  ... param T := 30;
  ... param n := 5;
  ... """)
  >>> print data.T
  30
  >>> print data.n
  5

Parameters are commonly indexed over sets. No validation is done by Amply,
and the sets do not have to exist. Parameter objects are represented
as a mapping.

  >>> data = Amply("""
  ... param COSTS{PRODUCTS};
  ... param COSTS :=
  ...   FISH 8.5
  ...   CARROTS 2.4
  ...   POTATOES 1.6
  ... ;
  ... """)
  >>> print data.COSTS
  <ParamObject: {'POTATOES': 1.6000000000000001, 'FISH': 8.5, 'CARROTS': 2.3999999999999999}>
  >>> print data.COSTS['FISH']
  8.5

Parameter data statements can include a *default* clause. If a '.' is included
in the data, it is replaced with the default value:

  >>> data = Amply("""
  ... param COSTS{P};
  ... param COSTS default 2 :=
  ... F 2
  ... E 1
  ... D .
  ... ;
  ... """)
  >>> print data.COSTS['D']
  2.0

Parameter declarations can also have a default clause. For these parameters,
any attempt to access the parameter for a key that has not been defined
will return the default value:

  >>> data = Amply("""
  ... param COSTS{P} default 42;
  ... param COSTS :=
  ... F 2
  ... E 1
  ... ;
  ... """)
  >>> print data.COSTS['DOES NOT EXIST']
  42.0

Parameters can be indexed over multiple sets. The resulting values can be
accessed by treating the parameter object as a nested dictionary, or by
using a tuple as an index:

  >>> data = Amply("""
  ... param COSTS{CITIES, PRODUCTS};
  ... param COSTS :=
  ...  Auckland FISH 5
  ...  Auckland CHIPS 3
  ...  Wellington FISH 4
  ...  Wellington CHIPS 1
  ... ;
  ... """)
  >>> print data.COSTS
  <ParamObject: {'Wellington': {'FISH': 4.0, 'CHIPS': 1.0}, 'Auckland': {'FISH': 5.0, 'CHIPS': 3.0}}>
  >>> print data.COSTS['Wellington']['CHIPS'] # nested dict
  1.0
  >>> print data.COSTS['Wellington', 'CHIPS'] # tuple as key
  1.0

Parameters support a slice syntax similar to that of sets:

  >>> data = Amply("""
  ... param COSTS{CITIES, PRODUCTS};
  ... param COSTS :=
  ...  [Auckland, * ]
  ...   FISH 5
  ...   CHIPS 3
  ...  [Wellington, * ]
  ...   FISH 4
  ...   CHIPS 1
  ... ;
  ... """)
  >>> print data.COSTS
  <ParamObject: {'Wellington': {'FISH': 4.0, 'CHIPS': 1.0}, 'Auckland': {'FISH': 5.0, 'CHIPS': 3.0}}>



Parameters indexed over two sets can also be specified in tabular format:


  >>> data = Amply("""
  ... param COSTS{CITIES, PRODUCTS};
  ... param COSTS: FISH CHIPS :=
  ...  Auckland    5    3
  ...  Wellington  4    1
  ... ;
  ... """)
  >>> print data.COSTS
  <ParamObject: {'Wellington': {'FISH': 4.0, 'CHIPS': 1.0}, 'Auckland': {'FISH': 5.0, 'CHIPS': 3.0}}>

Tabular data can also be transposed:

  >>> data = Amply("""
  ... param COSTS{CITIES, PRODUCTS};
  ... param COSTS (tr): Auckland Wellington :=
  ...            FISH   5        4
  ...            CHIPS  3        1
  ... ;
  ... """)
  >>> print data.COSTS
  <ParamObject: {'Wellington': {'FISH': 4.0, 'CHIPS': 1.0}, 'Auckland': {'FISH': 5.0, 'CHIPS': 3.0}}>


Slices can be combined with tabular data for parameters indexed over more than
2 sets:

  >>> data = Amply("""
  ... param COSTS{CITIES, PRODUCTS, SIZE};
  ... param COSTS :=
  ...  [Auckland, *, *] :   SMALL LARGE :=
  ...                 FISH  5     9
  ...                 CHIPS 3     5
  ...  [Wellington, *, *] : SMALL LARGE :=
  ...                 FISH  4     7
  ...                 CHIPS 1     2
  ... ;
  ... """)
  >>> print data.COSTS
  <ParamObject: {'Wellington': {'FISH': {'SMALL': 4.0, 'LARGE': 7.0}, 'CHIPS': {'SMALL': 1.0, 'LARGE': 2.0}}, 'Auckland': {'FISH': {'SMALL': 5.0, 'LARGE': 9.0}, '


API
---

All functionality is contained within the ``Amply`` class.

.. class:: Amply(string="")

  load_string(string)

    Parse string data.

  load_file(file)

    Parse contents of file or file-like object (has a read() method).

  from_file(file)

    Alternate constructor. Create Amply object from contents of file or file-like object.


The parsed data structures can then be accessed from an ``Amply`` object via
attribute lookup (if the name of the symbol is a valid Python name) or item
lookup. ::

    from pulp import Amply

    data = Amply("set CITIES := Auckland Hamilton Wellington")

    # attribute lookup
    assert data.CITIES == ['Auckland', 'Hamilton', 'Wellington']

    # item lookup
    assert data['CITIES'] == data.CITIES

Note that additional data may be loaded into an Amply object simply by calling
one of its methods. A common idiom might be to specify the set and parameter
declarations within your Python script, then load the actual data from
external files. ::

    from pulp import Amply

    data = Amply("""
      set CITIES;
      set ROUTES dimen 2;
      param COSTS{ROUTES};
      param DISTANCES{ROUTES};
    """)

    for data_file in ('cities.dat', 'routes.dat', 'costs.dat', 'distances.dat'):
        data.load_file(open(data_file))

.. Commented out the below, not sure if we need it (incomplete)

    Reference
    ---------

    Sets
    ^^^^

    Set declarations
    ~~~~~~~~~~~~~~~~

    A set declaration is an extremely limited version of set statements which are valid in AMPL models.
    They determine the *subscript domain* and *data dimension* of the set. If not specified, the default
    subscript domain is an empty set and the default dimension is 1.

    .. productionlist::
        set_def_stmt: "set" `name` [`subscript_domain`] ["dimen" `integer`] ";"
        subscript_domain: "{" `name` ("," `name`)* "}"

    The following statment declares a set named "countries". ::

        set countries;

    The following statement declares a set named "cities" which is indexed over "countries". ::

        set cities {countries};

    The following declares a set named "routes" with 2d data. ::

        set routes dimen 2;

    Set data statements
    ~~~~~~~~~~~~~~~~~~~~~

    A set data statement is used to specify the members of a set. It consists of one or more
    *data records*. There are four types of data records: simple data, slice records, matrix
    data and transposed matrix data.

    .. productionlist::
        set_stmt: "set" `name` [`set_member`] `data_record`+ ";"
        data_record: `simple_data` | `set_slice_record` | `matrix_data` | `tr_matrix_data`

    Simple Data
    ############

    A simple data record is an optionally comma-separated list of data values.

    .. productionlist::
        simple_data: `data` ([","] `data`)*

    For instance: ::

        set CITIES := Auckland Hamilton 'Palmerston North' Wellington;

    ::

        set ROUTES dimen 2;
        set ROUTES := (Auckland, Hamilton) (Auckland, Wellington);

    Slice Records
    ###############

    Slice records are used to simplify the entry of multi-dimensional sets. They allow you to partially
    specify the values of elements. A slice affects all data records that follow it (until a new slice
    is specified).

    .. productionlist::
        set_slice_record: "(" `set_slice_component` ("," `set_slice_component`)* ")"
        set_slice_component: `number` | `symbol` | "*"

    This is best demonstrated by some examples. The sets A and B are identical: ::

        set A dimen 3;
        set B dimen 3;

        set A := (1, 2, 3) (1, 3, 2) (1, 4, 6) (1, 8, 8) (2, 1, 3) (2, 1, 1) (2, 1, 2);
        set B := (1, *, *) (2, 3) (3, 2) (4, 6) (8, 8) (2, 1, *) 3 1 2;

    The number of asterisks in a slice is called the *slice dimension*. Any data records that follow
    are interpreted as being of the same dimension; the value is taken as the value of the slice with
    the asterisks replaced with the value of the record.

    Matrix records
    ################

    Matrix records are a convenient way of specifying 2-dimensional data. The data record looks like
    a matrix with row and column headings, where the values are either '+' if the combination is in
    the set, and '-' if the combination is not in the set. A common use-case is for defining the
    set of arcs that exist between a set of nodes.

    .. productionlist::
        matrix_data: ":" `matrix_columns` ":=" `matrix_row`+
        matrix_columns: `data`+
        matrix_row: `data` ("+"|"-")+
        tr_matrix_data: "(tr)" `matrix_data`

    Matrices can also be transposed by including ``(tr)`` immediately preceding the record.

    In the example below the sets A, B and C are identical: ::

        set A dimen 2;
        set B dimen 2;
        set C dimen 2;

        set A := (1, 1) (1, 3) (2, 2) (3, 1) (3, 2) (3, 3);
        set B : 1 2 3 :=
              1 + - +
              2 - + -
              3 + + +
        ;
        set C (tr) : 1 2 3 :=
                   1 + - +
                   2 - + +
                   3 + - +
        ;


    Matrices can be used for sets with higher dimensions by placing them after 2 dimensional
    slice records.


    Set examples
    ~~~~~~~~~~~~

    Parameters
    ^^^^^^^^^^^^

    Plain Data
    ~~~~~~~~~~~~~

    Tabular data
    ~~~~~~~~~~~~~~

    Tabbing Data
    ~~~~~~~~~~~~~~

Development Notes
-----------------

Many thanks to Johannes Ragam (@thet), former custodian of the "amply" project on PyPi.
Johannes graciously transferred the project to this. Thanks!