1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
|
# On-disk format
```{note}
These docs are written for anndata 0.8+.
Files written before this version may differ in some conventions,
but will still be read by newer versions of the library.
```
AnnData objects are saved on disk to hierarchical array stores like [HDF5]
(via {doc}`H5py <h5py:index>`) and {doc}`zarr:index`.
This allows us to have very similar structures in disk and on memory.
As an example we’ll look into a typical `.h5ad`/ `.zarr` object that’s been through an analysis.
The structures are largely equivalent, though there are a few minor differences when it comes to type encoding.
## Elements
<!-- I’ve started using h5py since I couldn’t figure out a nice way to print attributes from bash. -->
`````{tab-set}
````{tab-item} HDF5
:sync: hdf5
```python
>>> import h5py
>>> store = h5py.File("for-ondisk-docs/cart-164k-processed.h5ad", mode="r")
>>> list(store.keys())
['X', 'layers', 'obs', 'obsm', 'obsp', 'uns', 'var', 'varm', 'varp']
```
````
````{tab-item} Zarr
:sync: zarr
```python
>>> import zarr
>>> store = zarr.open("for-ondisk-docs/cart-164k-processed.zarr", mode="r")
>>> list(store.keys())
['X', 'layers', 'obs', 'obsm', 'obsp', 'uns', 'var', 'varm', 'varp']
```
````
`````
<!-- ```bash
$ h5ls 02_processed.h5ad
X Group
layers Group
obs Group
obsm Group
uns Group
var Group
varm Group
``` -->
In general, `AnnData` objects are comprised of various types of elements.
Each element is encoded as either an Array (or Dataset in hdf5 terminology) or a collection of elements (e.g. Group) in the store.
We record the type of an element using the `encoding-type` and `encoding-version` keys in its attributes.
For example, we can see that this file represents an `AnnData` object from its metadata:
```python
>>> dict(store.attrs)
{'encoding-type': 'anndata', 'encoding-version': '0.1.0'}
```
Using this information, we're able to dispatch onto readers for the different element types that you'd find in an anndata.
### Element Specification
* An element can be any object within the storage hierarchy (typically an array or group) with associated metadata
* An element MUST have a string-valued field `"encoding-type"` in its metadata
* An element MUST have a string-valued field `"encoding-version"` in its metadata that can be evaluated to a version
### AnnData specification (v0.1.0)
* An `AnnData` object MUST be a group.
* The group's metadata MUST include entries: `"encoding-type": "anndata"`, `"encoding-version": "0.1.0"`.
* An `AnnData` group MUST contain entries `"obs"` and `"var"`, which MUST be dataframes (though this may only have an index with no columns).
* The group MAY contain an entry `X`, which MUST be either a dense or sparse array and whose shape MUST be (`n_obs`, `n_var`)
* The group MAY contain a mapping `layers`. Entries in `layers` MUST be dense or sparse arrays which have shapes (`n_obs`, `n_var`)
* The group MAY contain a mapping `obsm`. Entries in `obsm` MUST be sparse arrays, dense arrays, or dataframes. These entries MUST have a first dimension of size `n_obs`
* The group MAY contain a mapping `varm`. Entries in `varm` MUST be sparse arrays, dense arrays, or dataframes. These entries MUST have a first dimension of size `n_var`
* The group MAY contain a mapping `obsp`. Entries in `obsp` MUST be sparse or dense arrays. The entries first two dimensions MUST be of size `n_obs`
* The group MAY contain a mapping `varp`. Entries in `varp` MUST be sparse or dense arrays. The entries first two dimensions MUST be of size `n_var`
* The group MAY contain a mapping `uns`. Entries in `uns` MUST be an anndata encoded type.
## Dense arrays
Dense numeric arrays have the most simple representation on disk,
as they have native equivalents in H5py {doc}`h5py:high/dataset` and Zarr {doc}`Arrays <zarr:user-guide/arrays>`.
We can see an example of this with dimensionality reductions stored in the `obsm` group:
`````{tab-set}
````{tab-item} HDF5
:sync: hdf5
```python
>>> store["obsm/X_pca"]
<HDF5 dataset "X_pca": shape (164114, 50), type "<f4">
```
````
````{tab-item} Zarr
:sync: zarr
```python
>>> store["obsm/X_pca"]
<zarr.core.Array '/obsm/X_pca' (164114, 50) float32 read-only>
```
````
`````
```python
>>> dict(store["obsm"]["X_pca"].attrs)
{'encoding-type': 'array', 'encoding-version': '0.2.0'}
```
<!-- ```bash
$ h5ls 02_processed.h5ad/obsm
X_pca Dataset {38410, 50}
X_umap Dataset {38410, 2}
``` -->
### Dense arrays specification (v0.2.0)
* Dense arrays MUST be stored in an Array object
* Dense arrays MUST have the entries `'encoding-type': 'array'` and `'encoding-version': '0.2.0'` in their metadata
## Sparse arrays
Sparse arrays don’t have a native representations in HDF5 or Zarr,
so we've defined our own based on their in-memory structure.
Currently two sparse data formats are supported by `AnnData` objects, CSC and CSR
(corresponding to {class}`scipy.sparse.csc_matrix` and {class}`scipy.sparse.csr_matrix` respectively).
These formats represent a two-dimensional sparse array with
three one-dimensional arrays, `indptr`, `indices`, and `data`.
```{note}
A full description of these formats is out of scope for this document,
but are [easy to find].
```
We represent a sparse array as a `Group` on-disk,
where the kind and shape of the sparse array is defined in the `Group`'s attributes:
```python
>>> dict(store["X"].attrs)
{'encoding-type': 'csr_matrix',
'encoding-version': '0.1.0',
'shape': [164114, 40145]}
```
The group contains three arrays:
`````{tab-set}
````{tab-item} HDF5
:sync: hdf5
```python
>>> store["X"].visititems(print)
data <HDF5 dataset "data": shape (495079432,), type "<f4">
indices <HDF5 dataset "indices": shape (495079432,), type "<i4">
indptr <HDF5 dataset "indptr": shape (164115,), type "<i4">
```
````
````{tab-item} Zarr
:sync: zarr
```python
>>> store["X"].visititems(print)
data <zarr.core.Array '/X/data' (495079432,) float32 read-only>
indices <zarr.core.Array '/X/indices' (495079432,) int32 read-only>
indptr <zarr.core.Array '/X/indptr' (164115,) int32 read-only>
```
````
`````
### Sparse array specification (v0.1.0)
* Each sparse array MUST be its own group
* The group MUST contain arrays `indices`, `indptr`, and `data`
* The group's metadata MUST contain:
* `"encoding-type"`, which is set to `"csr_matrix"` or `"csc_matrix"` for compressed sparse row and compressed sparse column, respectively.
* `"encoding-version"`, which is set to `"0.1.0"`
* `"shape"` which is an integer array of length 2 whose values are the sizes of the array's dimensions
## DataFrames
DataFrames are saved as a columnar format in a group, so each column of a DataFrame is saved as a separate array.
We save a little more information in the attributes here.
```python
>>> dict(store["var"].attrs)
{'_index': 'ensembl_id',
'column-order': ['highly_variable',
'means',
'variances',
'variances_norm',
'feature_is_filtered',
'feature_name',
'feature_reference',
'feature_biotype',
'mito'],
'encoding-type': 'dataframe',
'encoding-version': '0.2.0'}
```
These attributes identify the index of the dataframe, as well as the original order of the columns.
Each column in this dataframe is encoded as its own array.
`````{tab-set}
````{tab-item} HDF5
:sync: hdf5
```python
>>> store["var"].visititems(print)
ensembl_id <HDF5 dataset "ensembl_id": shape (40145,), type "|O">
feature_biotype <HDF5 group "/var/feature_biotype" (2 members)>
feature_biotype/categories <HDF5 dataset "categories": shape (1,), type "|O">
feature_biotype/codes <HDF5 dataset "codes": shape (40145,), type "|i1">
feature_is_filtered <HDF5 dataset "feature_is_filtered": shape (40145,), type "|b1">
...
```
````
````{tab-item} Zarr
:sync: zarr
```python
>>> store["var"].visititems(print)
ensembl_id <zarr.core.Array '/var/ensembl_id' (40145,) object read-only>
feature_biotype <zarr.hierarchy.Group '/var/feature_biotype' read-only>
feature_biotype/categories <zarr.core.Array '/var/feature_biotype/categories' (1,) object read-only>
feature_biotype/codes <zarr.core.Array '/var/feature_biotype/codes' (40145,) int8 read-only>
feature_is_filtered <zarr.core.Array '/var/feature_is_filtered' (40145,) bool read-only>
...
```
````
`````
```python
>>> dict(store["var"]["feature_name"].attrs)
{'encoding-type': 'categorical', 'encoding-version': '0.2.0', 'ordered': False}
>>> dict(store["var"]["feature_is_filtered"].attrs)
{'encoding-type': 'array', 'encoding-version': '0.2.0'}
```
### Dataframe Specification (v0.2.0)
* A dataframe MUST be stored as a group
* The group's metadata:
* MUST contain the field `"_index"`, whose value is the key of the array to be used as an index/ row labels
* MUST contain encoding metadata `"encoding-type": "dataframe"`, `"encoding-version": "0.2.0"`
* MUST contain `"column-order"` an array of strings denoting the order of column entries
* The group MUST contain an array for the index
* Each entry in the group MUST correspond to an array with equivalent first dimensions
* Each entry SHOULD share chunk sizes (in the HDF5 or zarr container)
## Mappings
Mappings are simply stored as `Group`s on disk.
These are distinct from DataFrames and sparse arrays since they don’t have any special attributes.
A `Group` is created for any `Mapping` in the AnnData object,
including the standard `obsm`, `varm`, `layers`, and `uns`.
Notably, this definition is used recursively within `uns`:
`````{tab-set}
````{tab-item} HDF5
:sync: hdf5
```python
>>> store["uns"].visititems(print)
[...]
pca <HDF5 group "/uns/pca" (3 members)>
pca/variance <HDF5 dataset "variance": shape (50,), type "<f8">
pca/variance_ratio <HDF5 dataset "variance_ratio": shape (50,), type "<f8">
[...]
```
````
````{tab-item} Zarr
:sync: zarr
```python
>>> store["uns"].visititems(print)
[...]
pca <zarr.hierarchy.Group '/uns/pca' read-only>
pca/variance <zarr.core.Array '/uns/pca/variance' (50,) float64 read-only>
pca/variance_ratio <zarr.core.Array '/uns/pca/variance_ratio' (50,) float64 read-only>
[...]
```
````
`````
### Mapping specifications (v0.1.0)
* Each mapping MUST be its own group
* The group's metadata MUST contain the encoding metadata `"encoding-type": "dict"`, `"encoding-version": "0.1.0"`
## Scalars
Zero dimensional arrays are used for scalar values (i.e. single values like strings, numbers or booleans).
These should only occur inside of `uns`, and are commonly saved parameters:
`````{tab-set}
````{tab-item} HDF5
:sync: hdf5
```python
>>> store["uns/neighbors/params"].visititems(print)
method <HDF5 dataset "method": shape (), type "|O">
metric <HDF5 dataset "metric": shape (), type "|O">
n_neighbors <HDF5 dataset "n_neighbors": shape (), type "<i8">
random_state <HDF5 dataset "random_state": shape (), type "<i8">
```
````
````{tab-item} Zarr
:sync: zarr
```python
>>> store["uns/neighbors/params"].visititems(print)
method <zarr.core.Array '/uns/neighbors/params/method' () <U4 read-only>
metric <zarr.core.Array '/uns/neighbors/params/metric' () <U9 read-only>
n_neighbors <zarr.core.Array '/uns/neighbors/params/n_neighbors' () int64 read-only>
random_state <zarr.core.Array '/uns/neighbors/params/random_state' () int64 read-only>
```
````
`````
```python
>>> store["uns/neighbors/params/metric"][()]
'euclidean'
>>> dict(store["uns/neighbors/params/metric"].attrs)
{'encoding-type': 'string', 'encoding-version': '0.2.0'}
```
### Scalar specification (v0.2.0)
* Scalars MUST be written as a 0 dimensional array
* Numeric scalars
* MUST have `"encoding-type": "numeric-scalar"`, `"encoding-version": "0.2.0"` in their metadata
* MUST be a single numeric value, including boolean, unsigned integer, signed integer, floating point, or complex floating point
* String scalars
* MUST have `"encoding-type": "string"`, `"encoding-version": "0.2.0"` in their metadata
* In zarr, scalar strings MUST be stored as a fixed length unicode dtype
* In HDF5, scalar strings MUST be stored as a variable length utf-8 encoded string dtype
## Categorical arrays
```python
>>> categorical = store["obs"]["development_stage"]
>>> dict(categorical.attrs)
{'encoding-type': 'categorical', 'encoding-version': '0.2.0', 'ordered': False}
```
Discrete values can be efficiently represented with categorical arrays (similar to `factors` in `R`).
These arrays encode the values as small width integers (`codes`), which map to the original label set (`categories`).
Each entry in the `codes` array is the zero-based index of the encoded value in the `categories` array.
To represent a missing value, a code of `-1` is used.
We store these two arrays separately.
`````{tab-set}
````{tab-item} HDF5
:sync: hdf5
```python
>>> categorical.visititems(print)
categories <HDF5 dataset "categories": shape (7,), type "|O">
codes <HDF5 dataset "codes": shape (164114,), type "|i1">
```
````
````{tab-item} Zarr
:sync: zarr
```python
>>> categorical.visititems(print)
categories <zarr.core.Array '/obs/development_stage/categories' (7,) object read-only>
codes <zarr.core.Array '/obs/development_stage/codes' (164114,) int8 read-only>
```
````
`````
### Categorical array specification (v0.2.0)
* Categorical arrays MUST be stored as a group
* The group's metadata MUST contain the encoding metadata `"encoding-type": "categorical"`, `"encoding-version": "0.2.0"`
* The group's metadata MUST contain the boolean valued field `"ordered"`, which indicates whether the categories are ordered
* The group MUST contain an integer valued array named `"codes"` whose maximum value is the number of categories - 1
* The `"codes"` array MAY contain signed integer values. If so, the code `-1` denotes a missing value
* The group MUST contain an array called `"categories"`
## String arrays
Arrays of strings are handled differently than numeric arrays since numpy doesn't really have a good way of representing arrays of unicode strings.
`anndata` assumes strings are text-like data, so it uses a variable length encoding.
`````{tab-set}
````{tab-item} HDF5
:sync: hdf5
```python
>>> store["var"][store["var"].attrs["_index"]]
<HDF5 dataset "ensembl_id": shape (40145,), type "|O">
```
````
````{tab-item} Zarr
:sync: zarr
```python
>>> store["var"][store["var"].attrs["_index"]]
<zarr.core.Array '/var/ensembl_id' (40145,) object read-only>
```
````
`````
```python
>>> dict(categorical["categories"].attrs)
{'encoding-type': 'string-array', 'encoding-version': '0.2.0'}
```
### String array specifications (v0.2.0)
* String arrays MUST be stored in arrays
* The arrays's metadata MUST contain the encoding metadata `"encoding-type": "string-array"`, `"encoding-version": "0.2.0"`
* In `zarr`, string arrays MUST be stored using `numcodecs`' `VLenUTF8` codec
* In `HDF5`, string arrays MUST be stored using the variable length string data type, with a utf-8 encoding
## Nullable integers and booleans
We support IO with Pandas nullable integer and boolean arrays.
We represent these on disk similar to `numpy` masked arrays, `julia` nullable arrays, or `arrow` validity bitmaps (see {issue}`504` for more discussion).
That is, we store an indicator array (or mask) of null values alongside the array of all values.
`````{tab-set}
````{tab-item} HDF5
:sync: hdf5
```python
>>> from anndata import write_elem
>>> null_store = h5py.File("tmp.h5", mode="w")
>>> int_array = pd.array([1, None, 3, 4])
>>> int_array
<IntegerArray>
[1, <NA>, 3, 4]
Length: 4, dtype: Int64
>>> write_elem(null_store, "nullable_integer", int_array)
>>> null_store.visititems(print)
nullable_integer <HDF5 group "/nullable_integer" (2 members)>
nullable_integer/mask <HDF5 dataset "mask": shape (4,), type "|b1">
nullable_integer/values <HDF5 dataset "values": shape (4,), type "<i8">
```
````
````{tab-item} Zarr
:sync: zarr
```python
>>> from anndata import write_elem
>>> null_store = zarr.open()
>>> int_array = pd.array([1, None, 3, 4])
>>> int_array
<IntegerArray>
[1, <NA>, 3, 4]
Length: 4, dtype: Int64
>>> write_elem(null_store, "nullable_integer", int_array)
>>> null_store.visititems(print)
nullable_integer <zarr.hierarchy.Group '/nullable_integer'>
nullable_integer/mask <zarr.core.Array '/nullable_integer/mask' (4,) bool>
nullable_integer/values <zarr.core.Array '/nullable_integer/values' (4,) int64>
```
````
`````
```python
>>> dict(null_store["nullable_integer"].attrs)
{'encoding-type': 'nullable-integer', 'encoding-version': '0.1.0'}
```
### Nullable integer specifications (v0.1.0)
* Nullable integers MUST be stored as a group
* The group's attributes MUST have contain the encoding metadata `"encoding-type": "nullable-integer"`, `"encoding-version": "0.1.0"`
* The group MUST contain an integer valued array under the key `"values"`
* The group MUST contain an boolean valued array under the key `"mask"`
### Nullable boolean specifications (v0.1.0)
* Nullable booleans MUST be stored as a group
* The group's attributes MUST have contain the encoding metadata `"encoding-type": "nullable-boolean"`, `"encoding-version": "0.1.0"`
* The group MUST contain an boolean valued array under the key `"values"`
* The group MUST contain an boolean valued array under the key `"mask"`
* The `"values"` and `"mask"` arrays MUST be the same shape
## AwkwardArrays
```{warning}
**Experimental**
Support for ragged arrays via awkward array is considered experimental under the 0.9.0 release series.
Please direct feedback on it's implementation to [https://github.com/scverse/anndata](https://github.com/scverse/anndata).
```
Ragged arrays are supported in `anndata` through the [Awkward
Array](https://awkward-array.org/) library. For storage on disk, we
break down the awkward array into it’s constituent arrays using
[`ak.to_buffers`](https://awkward-array.readthedocs.io/en/latest/_auto/ak.to_buffers.html)
then writing these arrays using `anndata`’s methods.
`````{tab-set}
````{tab-item} HDF5
:sync: hdf5
```python
>>> store["varm/transcript"].visititems(print)
node1-mask <HDF5 dataset "node1-mask": shape (5019,), type "|u1">
node10-data <HDF5 dataset "node10-data": shape (250541,), type "<i8">
node11-mask <HDF5 dataset "node11-mask": shape (5019,), type "|u1">
node12-offsets <HDF5 dataset "node12-offsets": shape (40146,), type "<i8">
node13-mask <HDF5 dataset "node13-mask": shape (250541,), type "|i1">
node14-data <HDF5 dataset "node14-data": shape (250541,), type "<i8">
node16-offsets <HDF5 dataset "node16-offsets": shape (40146,), type "<i8">
node17-data <HDF5 dataset "node17-data": shape (602175,), type "|u1">
node2-offsets <HDF5 dataset "node2-offsets": shape (40146,), type "<i8">
node3-data <HDF5 dataset "node3-data": shape (600915,), type "|u1">
node4-mask <HDF5 dataset "node4-mask": shape (5019,), type "|u1">
node5-offsets <HDF5 dataset "node5-offsets": shape (40146,), type "<i8">
node6-data <HDF5 dataset "node6-data": shape (59335,), type "|u1">
node7-mask <HDF5 dataset "node7-mask": shape (5019,), type "|u1">
node8-offsets <HDF5 dataset "node8-offsets": shape (40146,), type "<i8">
node9-mask <HDF5 dataset "node9-mask": shape (250541,), type "|i1">
```
````
````{tab-item} Zarr
:sync: zarr
```python
>>> store["varm/transcript"].visititems(print)
node1-mask <zarr.core.Array '/varm/transcript/node1-mask' (5019,) uint8 read-only>
node10-data <zarr.core.Array '/varm/transcript/node10-data' (250541,) int64 read-only>
node11-mask <zarr.core.Array '/varm/transcript/node11-mask' (5019,) uint8 read-only>
node12-offsets <zarr.core.Array '/varm/transcript/node12-offsets' (40146,) int64 read-only>
node13-mask <zarr.core.Array '/varm/transcript/node13-mask' (250541,) int8 read-only>
node14-data <zarr.core.Array '/varm/transcript/node14-data' (250541,) int64 read-only>
node16-offsets <zarr.core.Array '/varm/transcript/node16-offsets' (40146,) int64 read-only>
node17-data <zarr.core.Array '/varm/transcript/node17-data' (602175,) uint8 read-only>
node2-offsets <zarr.core.Array '/varm/transcript/node2-offsets' (40146,) int64 read-only>
node3-data <zarr.core.Array '/varm/transcript/node3-data' (600915,) uint8 read-only>
node4-mask <zarr.core.Array '/varm/transcript/node4-mask' (5019,) uint8 read-only>
node5-offsets <zarr.core.Array '/varm/transcript/node5-offsets' (40146,) int64 read-only>
node6-data <zarr.core.Array '/varm/transcript/node6-data' (59335,) uint8 read-only>
node7-mask <zarr.core.Array '/varm/transcript/node7-mask' (5019,) uint8 read-only>
node8-offsets <zarr.core.Array '/varm/transcript/node8-offsets' (40146,) int64 read-only>
node9-mask <zarr.core.Array '/varm/transcript/node9-mask' (250541,) int8 read-only>
```
````
`````
The length of the array is saved to it’s own `"length"` attribute,
while metadata for the array structure is serialized and saved to the
`“form”` attribute.
```python
>>> dict(store["varm/transcript"].attrs)
{'encoding-type': 'awkward-array',
'encoding-version': '0.1.0',
'form': '{"class": "RecordArray", "fields": ["tx_id", "seq_name", '
'"exon_seq_start", "exon_seq_end", "ensembl_id"], "contents": '
'[{"class": "BitMaskedArray", "mask": "u8", "valid_when": true, '
'"lsb_order": true, "content": {"class": "ListOffsetArray", '
'"offsets": "i64", "content": {"class": "NumpyArray", "primitive": '
'"uint8", "inner_shape": [], "parameters": {"__array__": "char"}, '
'"form_key": "node3"}, "parameters": {"__array__": "string"}, '
'"form_key": "node2"}, "parameters": {}, "form_key": "node1"}, '
...
'length': 40145}
```
These can be read back as awkward arrays using the
[`ak.from_buffers`](https://awkward-array.readthedocs.io/en/latest/_auto/ak.from_buffers.html)
function:
```python
>>> import awkward as ak
>>> from anndata.io import read_elem
>>> awkward_group = store["varm/transcript"]
>>> ak.from_buffers(
... awkward_group.attrs["form"],
... awkward_group.attrs["length"],
... {k: read_elem(v) for k, v in awkward_group.items()}
... )
>>> transcript_models[:5]
[{tx_id: 'ENST00000450305', seq_name: '1', exon_seq_start: [...], ...},
{tx_id: 'ENST00000488147', seq_name: '1', exon_seq_start: [...], ...},
{tx_id: 'ENST00000473358', seq_name: '1', exon_seq_start: [...], ...},
{tx_id: 'ENST00000477740', seq_name: '1', exon_seq_start: [...], ...},
{tx_id: 'ENST00000495576', seq_name: '1', exon_seq_start: [...], ...}]
-----------------------------------------------------------------------
type: 5 * {
tx_id: ?string,
seq_name: ?string,
exon_seq_start: option[var * ?int64],
exon_seq_end: option[var * ?int64],
ensembl_id: ?string
}
>>> transcript_models[0]
{tx_id: 'ENST00000450305',
seq_name: '1',
exon_seq_start: [12010, 12179, 12613, 12975, 13221, 13453],
exon_seq_end: [12057, 12227, 12697, 13052, 13374, 13670],
ensembl_id: 'ENSG00000223972'}
------------------------------------------------------------
type: {
tx_id: ?string,
seq_name: ?string,
exon_seq_start: option[var * ?int64],
exon_seq_end: option[var * ?int64],
ensembl_id: ?string
}
```
[easy to find]: https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format)
[hdf5]: https://en.wikipedia.org/wiki/Hierarchical_Data_Format
|