File: conftest.py

package info (click to toggle)
python-anndata 0.12.0~rc1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,704 kB
  • sloc: python: 19,721; makefile: 22; sh: 14
file content (247 lines) | stat: -rw-r--r-- 6,820 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
from __future__ import annotations

import typing
from typing import TYPE_CHECKING

import numpy as np
import pandas as pd
import pytest
from scipy import sparse

import anndata as ad
from anndata import AnnData
from anndata._types import AnnDataElem
from anndata.experimental import read_lazy
from anndata.tests.helpers import (
    DEFAULT_COL_TYPES,
    AccessTrackingStore,
    as_dense_dask_array,
    gen_adata,
    gen_typed_df,
)

if TYPE_CHECKING:
    from collections.abc import Generator
    from pathlib import Path
    from typing import Literal

ANNDATA_ELEMS = typing.get_args(AnnDataElem)


@pytest.fixture(
    params=[sparse.csr_matrix, sparse.csc_matrix, np.array, as_dense_dask_array],
    ids=["scipy-csr", "scipy-csc", "np-array", "dask_array"],
    scope="session",
)
def mtx_format(request):
    return request.param


@pytest.fixture(
    params=[True, False], ids=["vars_different", "vars_same"], scope="session"
)
def are_vars_different(request):
    return request.param


@pytest.fixture(params=["zarr", "h5ad"], scope="session")
def diskfmt(request) -> Literal["zarr", "h5ad"]:
    return request.param


@pytest.fixture(
    params=[True, False],
    scope="session",
    ids=["load-annotation-index", "dont-load-annotation-index"],
)
def load_annotation_index(request):
    return request.param


@pytest.fixture(params=["outer", "inner"], scope="session")
def join(request):
    return request.param


@pytest.fixture(
    params=[
        pytest.param(lambda x: x, id="full"),
        pytest.param(lambda x: x[0:10, :], id="subset"),
    ],
    scope="session",
)
def simple_subset_func(request):
    return request.param


@pytest.fixture(scope="session")
def adata_remote_orig_with_path(
    tmp_path_factory,
    diskfmt: str,
    mtx_format,
    worker_id: str = "serial",
) -> tuple[Path, AnnData]:
    """Create remote fixtures, one without a range index and the other with"""
    file_name = f"orig_{worker_id}.{diskfmt}"
    if diskfmt == "h5ad":
        orig_path = tmp_path_factory.mktemp("h5ad_file_dir") / file_name
    else:
        orig_path = tmp_path_factory.mktemp(file_name)
    orig = gen_adata(
        (100, 110),
        mtx_format,
        obs_dtypes=(*DEFAULT_COL_TYPES, pd.StringDtype),
        var_dtypes=(*DEFAULT_COL_TYPES, pd.StringDtype),
    )
    orig.raw = orig.copy()
    with ad.settings.override(allow_write_nullable_strings=True):
        getattr(ad.io, f"write_{diskfmt}")(
            orig_path, orig, convert_strings_to_categoricals=False
        )
    return orig_path, orig


@pytest.fixture
def adata_remote(
    adata_remote_orig_with_path: tuple[Path, AnnData], *, load_annotation_index: bool
) -> AnnData:
    orig_path, _ = adata_remote_orig_with_path
    return read_lazy(orig_path, load_annotation_index=load_annotation_index)


@pytest.fixture
def adata_orig(adata_remote_orig_with_path: tuple[Path, AnnData]) -> AnnData:
    _, orig = adata_remote_orig_with_path
    return orig


@pytest.fixture(scope="session")
def adata_remote_with_store_tall_skinny_path(
    tmp_path_factory,
    mtx_format,
    worker_id: str = "serial",
) -> Path:
    orig_path = tmp_path_factory.mktemp(f"orig_{worker_id}.zarr")
    M = 100_000  # forces zarr to chunk `obs` columns multiple ways - that way 1 access to `int64` below is actually only one access
    N = 5
    obs_names = pd.Index(f"cell{i}" for i in range(M))
    var_names = pd.Index(f"gene{i}" for i in range(N))
    obs = gen_typed_df(M, obs_names)
    var = gen_typed_df(N, var_names)
    orig = AnnData(
        obs=obs,
        var=var,
        X=mtx_format(np.random.binomial(100, 0.005, (M, N)).astype(np.float32)),
    )
    orig.raw = orig.copy()
    orig.write_zarr(orig_path)
    return orig_path


@pytest.fixture(scope="session")
def adatas_paths_var_indices_for_concatenation(
    tmp_path_factory, *, are_vars_different: bool, worker_id: str = "serial"
) -> tuple[list[AnnData], list[Path], list[pd.Index]]:
    adatas = []
    var_indices = []
    paths = []
    M = 1000
    N = 50
    n_datasets = 3
    for dataset_index in range(n_datasets):
        orig_path = tmp_path_factory.mktemp(f"orig_{worker_id}_{dataset_index}.zarr")
        paths.append(orig_path)
        obs_names = pd.Index(f"cell_{dataset_index}_{i}" for i in range(M))
        var_names = pd.Index(
            f"gene_{i}{f'_{dataset_index}_ds' if are_vars_different and (i % 2) else ''}"
            for i in range(N)
        )
        var_indices.append(var_names)
        obs = gen_typed_df(M, obs_names)
        var = gen_typed_df(N, var_names)
        orig = AnnData(
            obs=obs,
            var=var,
            X=np.random.binomial(100, 0.005, (M, N)).astype(np.float32),
        )
        orig.write_zarr(orig_path)
        adatas.append(orig)
    return adatas, paths, var_indices


@pytest.fixture
def var_indices_for_concat(
    adatas_paths_var_indices_for_concatenation,
) -> list[pd.Index]:
    _, _, var_indices = adatas_paths_var_indices_for_concatenation
    return var_indices


@pytest.fixture
def adatas_for_concat(
    adatas_paths_var_indices_for_concatenation,
) -> list[AnnData]:
    adatas, _, _ = adatas_paths_var_indices_for_concatenation
    return adatas


@pytest.fixture
def stores_for_concat(
    adatas_paths_var_indices_for_concatenation,
) -> list[AccessTrackingStore]:
    _, paths, _ = adatas_paths_var_indices_for_concatenation
    return [AccessTrackingStore(path) for path in paths]


@pytest.fixture
def lazy_adatas_for_concat(
    stores_for_concat,
) -> list[AnnData]:
    return [read_lazy(store) for store in stores_for_concat]


@pytest.fixture
def adata_remote_with_store_tall_skinny(
    adata_remote_with_store_tall_skinny_path: Path,
) -> tuple[AnnData, AccessTrackingStore]:
    store = AccessTrackingStore(adata_remote_with_store_tall_skinny_path)
    remote = read_lazy(store)
    return remote, store


@pytest.fixture
def remote_store_tall_skinny(
    adata_remote_with_store_tall_skinny_path: Path,
) -> AccessTrackingStore:
    return AccessTrackingStore(adata_remote_with_store_tall_skinny_path)


@pytest.fixture
def adata_remote_tall_skinny(
    remote_store_tall_skinny: AccessTrackingStore,
) -> AnnData:
    remote = read_lazy(remote_store_tall_skinny)
    return remote


def get_key_trackers_for_columns_on_axis(
    adata: AnnData, axis: Literal["obs", "var"]
) -> Generator[str, None, None]:
    """Generate keys for tracking, using `codes` from categorical columns instead of the column name

    Parameters
    ----------
    adata
        Object to get keys from
    axis
        Axis to get keys from

    Yields
    ------
    Keys for tracking
    """
    for col in getattr(adata, axis).columns:
        yield f"{axis}/{col}" if "cat" not in col else f"{axis}/{col}/codes"


ANNDATA_ELEMS = typing.get_args(AnnDataElem)