File: test_backed_hdf5.py

package info (click to toggle)
python-anndata 0.12.0~rc1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,704 kB
  • sloc: python: 19,721; makefile: 22; sh: 14
file content (353 lines) | stat: -rw-r--r-- 11,244 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
"""Tests for backing using the `.file` and `.isbacked` attributes."""

from __future__ import annotations

from pathlib import Path

import joblib
import numpy as np
import pytest
from scipy import sparse

import anndata as ad
from anndata.compat import CSArray, CSMatrix
from anndata.tests.helpers import (
    GEN_ADATA_DASK_ARGS,
    as_dense_dask_array,
    assert_equal,
    gen_adata,
    subset_func,
)
from anndata.utils import asarray

subset_func2 = subset_func


# -------------------------------------------------------------------------------
# Some test data
# -------------------------------------------------------------------------------


@pytest.fixture
def adata():
    X_list = [
        [1, 2, 3],
        [4, 5, 6],
        [7, 8, 9],
    ]  # data matrix of shape n_obs x n_vars
    X = np.array(X_list)
    obs_dict = dict(  # annotation of observations / rows
        row_names=["name1", "name2", "name3"],  # row annotation
        oanno1=["cat1", "cat2", "cat2"],  # categorical annotation
        oanno2=["o1", "o2", "o3"],  # string annotation
        oanno3=[2.1, 2.2, 2.3],  # float annotation
    )
    var_dict = dict(vanno1=[3.1, 3.2, 3.3])  # annotation of variables / columns
    uns_dict = dict(  # unstructured annotation
        oanno1_colors=["#000000", "#FFFFFF"], uns2=["some annotation"]
    )
    return ad.AnnData(
        X,
        obs=obs_dict,
        var=var_dict,
        uns=uns_dict,
        obsm=dict(o1=np.zeros((X.shape[0], 10))),
        varm=dict(v1=np.ones((X.shape[1], 20))),
        layers=dict(float=X.astype(float), sparse=sparse.csr_matrix(X)),
    )


@pytest.fixture(
    params=[sparse.csr_matrix, sparse.csc_matrix, np.array, as_dense_dask_array],
    ids=["scipy-csr", "scipy-csc", "np-array", "dask_array"],
)
def mtx_format(request):
    return request.param


@pytest.fixture(params=[sparse.csr_matrix, sparse.csc_matrix])
def sparse_format(request):
    return request.param


@pytest.fixture(params=["r+", "r", False])
def backed_mode(request):
    return request.param


@pytest.fixture(params=(("X",), ()))
def as_dense(request):
    return request.param


# -------------------------------------------------------------------------------
# The test functions
# -------------------------------------------------------------------------------


# h5py internally calls `product` on min-versions
@pytest.mark.filterwarnings("ignore:`product` is deprecated as of NumPy 1.25.0")
# TODO: Check to make sure obs, obsm, layers, ... are written and read correctly as well
@pytest.mark.filterwarnings("error")
def test_read_write_X(tmp_path, mtx_format, backed_mode, as_dense):
    base_pth = Path(tmp_path)
    orig_pth = base_pth / "orig.h5ad"
    backed_pth = base_pth / "backed.h5ad"

    orig = ad.AnnData(mtx_format(asarray(sparse.random(10, 10, format="csr"))))
    orig.write(orig_pth)

    backed = ad.read_h5ad(orig_pth, backed=backed_mode)
    backed.write(backed_pth, as_dense=as_dense)
    backed.file.close()

    from_backed = ad.read_h5ad(backed_pth)
    assert np.all(asarray(orig.X) == asarray(from_backed.X))


# this is very similar to the views test
@pytest.mark.filterwarnings("ignore::anndata.ImplicitModificationWarning")
def test_backing(adata, tmp_path, backing_h5ad):
    assert not adata.isbacked

    adata.filename = backing_h5ad
    adata.write()
    assert not adata.file.is_open
    assert adata.isbacked
    assert adata[:, 0].is_view
    assert adata[:, 0].X.tolist() == np.reshape([1, 4, 7], (3, 1)).tolist()
    # this might give us a trouble as the user might not
    # know that the file is open again....
    assert adata.file.is_open

    adata[:2, 0].X = [0, 0]
    assert adata[:, 0].X.tolist() == np.reshape([0, 0, 7], (3, 1)).tolist()

    adata_subset = adata[:2, [0, 1]]
    assert adata_subset.is_view
    subset_hash = joblib.hash(adata_subset)

    # cannot set view in backing mode...
    with pytest.raises(ValueError, match=r"pass a filename.*to_memory"):
        adata_subset.obs["foo"] = range(2)
    with pytest.raises(ValueError, match=r"pass a filename.*to_memory"):
        adata_subset.var["bar"] = -12
    with pytest.raises(ValueError, match=r"pass a filename.*to_memory"):
        adata_subset.obsm["o2"] = np.ones((2, 2))
    with pytest.raises(ValueError, match=r"pass a filename.*to_memory"):
        adata_subset.varm["v2"] = np.zeros((2, 2))
    with pytest.raises(ValueError, match=r"pass a filename.*to_memory"):
        adata_subset.layers["float2"] = adata_subset.layers["float"].copy()

    # Things should stay the same after failed operations
    assert subset_hash == joblib.hash(adata_subset)
    assert adata_subset.is_view

    # need to copy first
    adata_subset = adata_subset.copy(tmp_path / "test.subset.h5ad")
    # now transition to actual object
    assert not adata_subset.is_view
    adata_subset.obs["foo"] = range(2)
    assert not adata_subset.is_view
    assert adata_subset.isbacked
    assert adata_subset.obs["foo"].tolist() == list(range(2))

    # save
    adata_subset.write()


def test_backing_copy(adata, tmp_path, backing_h5ad):
    adata.filename = backing_h5ad
    adata.write()

    copypath = tmp_path / "test.copy.h5ad"
    copy = adata.copy(copypath)

    assert adata.filename == backing_h5ad
    assert copy.filename == copypath
    assert adata.isbacked
    assert copy.isbacked


# TODO: Also test updating the backing file inplace
def test_backed_raw(tmp_path):
    backed_pth = tmp_path / "backed.h5ad"
    final_pth = tmp_path / "final.h5ad"
    mem_adata = gen_adata((10, 10), **GEN_ADATA_DASK_ARGS)
    mem_adata.raw = mem_adata
    mem_adata.write(backed_pth)

    backed_adata = ad.read_h5ad(backed_pth, backed="r")
    assert_equal(backed_adata, mem_adata)
    backed_adata.write_h5ad(final_pth)

    final_adata = ad.read_h5ad(final_pth)
    assert_equal(final_adata, mem_adata)


@pytest.mark.parametrize(
    "array_type",
    [
        pytest.param(asarray, id="dense_array"),
        pytest.param(sparse.csr_matrix, id="csr_matrix"),
        pytest.param(sparse.csr_array, id="csr_array"),
    ],
)
def test_backed_raw_subset(tmp_path, array_type, subset_func, subset_func2):
    backed_pth = tmp_path / "backed.h5ad"
    final_pth = tmp_path / "final.h5ad"
    mem_adata = gen_adata((10, 10), X_type=array_type)
    mem_adata.raw = mem_adata
    obs_idx = subset_func(mem_adata.obs_names)
    var_idx = subset_func2(mem_adata.var_names)
    if (
        array_type is asarray
        and isinstance(obs_idx, list | np.ndarray | CSMatrix | CSArray)
        and isinstance(var_idx, list | np.ndarray | CSMatrix | CSArray)
    ):
        pytest.xfail(
            "Fancy indexing does not work with multiple arrays on a h5py.Dataset"
        )
    mem_adata.write(backed_pth)

    ### Backed view has same values as in memory view ###
    backed_adata = ad.read_h5ad(backed_pth, backed="r")
    backed_v = backed_adata[obs_idx, var_idx]
    assert backed_v.is_view
    mem_v = mem_adata[obs_idx, var_idx]

    # Value equivalent
    assert_equal(mem_v, backed_v)
    # Type and value equivalent
    assert_equal(mem_v.copy(), backed_v.to_memory(copy=True), exact=True)
    assert backed_v.is_view
    assert backed_v.isbacked

    ### Write from backed view ###
    backed_v.write_h5ad(final_pth)
    final_adata = ad.read_h5ad(final_pth)

    assert_equal(mem_v, final_adata)
    assert_equal(final_adata, backed_v.to_memory())  # assert loading into memory


@pytest.mark.parametrize(
    "array_type",
    [
        pytest.param(asarray, id="dense_array"),
        pytest.param(sparse.csr_matrix, id="csr_matrix"),
        pytest.param(as_dense_dask_array, id="dask_array"),
    ],
)
def test_to_memory_full(tmp_path, array_type):
    backed_pth = tmp_path / "backed.h5ad"
    mem_adata = gen_adata((15, 10), X_type=array_type, **GEN_ADATA_DASK_ARGS)
    mem_adata.raw = gen_adata((15, 12), X_type=array_type, **GEN_ADATA_DASK_ARGS)
    mem_adata.write_h5ad(backed_pth, compression="lzf")

    backed_adata = ad.read_h5ad(backed_pth, backed="r")
    assert_equal(mem_adata, backed_adata.to_memory())

    # Test that raw can be removed
    del backed_adata.raw
    del mem_adata.raw
    assert_equal(mem_adata, backed_adata.to_memory())


def test_double_index(adata, backing_h5ad):
    adata.filename = backing_h5ad
    with pytest.raises(ValueError, match=r"cannot make a view of a view"):
        # no view of view of backed object currently
        adata[:2][:, 0]

    # close backing file
    adata.write()


def test_return_to_memory_mode(adata, backing_h5ad):
    bdata = adata.copy()
    adata.filename = backing_h5ad
    assert adata.isbacked

    adata.filename = None
    assert not adata.isbacked

    assert adata.X is not None

    # make sure the previous file had been properly closed
    # when setting `adata.filename = None`
    # if it hadn’t the following line would throw an error
    bdata.filename = backing_h5ad
    # close the file
    bdata.filename = None


def test_backed_modification(adata, backing_h5ad):
    adata.X[:, 1] = 0  # Make it a little sparse
    adata.X = sparse.csr_matrix(adata.X)
    assert not adata.isbacked

    # While this currently makes the file backed, it doesn’t write it as sparse
    adata.filename = backing_h5ad
    adata.write()
    assert not adata.file.is_open
    assert adata.isbacked

    adata.X[0, [0, 2]] = 10
    adata.X[1, [0, 2]] = [11, 12]
    adata.X[2, 1] = 13  # If it were written as sparse, this should fail

    assert adata.isbacked

    assert np.all(adata.X[0, :] == np.array([10, 0, 10]))
    assert np.all(adata.X[1, :] == np.array([11, 0, 12]))
    assert np.all(adata.X[2, :] == np.array([7, 13, 9]))


def test_backed_modification_sparse(adata, backing_h5ad, sparse_format):
    adata.X[:, 1] = 0  # Make it a little sparse
    adata.X = sparse_format(adata.X)
    assert not adata.isbacked

    adata.write(backing_h5ad)
    adata = ad.read_h5ad(backing_h5ad, backed="r+")

    assert adata.filename == backing_h5ad
    assert adata.isbacked

    with pytest.warns(
        FutureWarning, match=r"__setitem__ for backed sparse will be removed"
    ):
        adata.X[0, [0, 2]] = 10
        adata.X[1, [0, 2]] = [11, 12]
        with pytest.raises(ValueError, match=r"cannot change the sparsity structure"):
            adata.X[2, 1] = 13

    assert adata.isbacked

    assert np.all(adata.X[0, :] == np.array([10, 0, 10]))
    assert np.all(adata.X[1, :] == np.array([11, 0, 12]))
    assert np.all(adata.X[2, :] == np.array([7, 0, 9]))


# TODO: Work around h5py not supporting this
# def test_backed_view_modification(adata, backing_h5ad):
#     adata.write(backing_h5ad)
#     backed_adata = ad.read_h5ad(backing_h5ad, backed=True)

#     backed_view = backed_adata[[1, 2], :]
#     backed_view.X = 0

#     assert np.all(backed_adata.X[:3, :] == 0)


# TODO: Implement
# def test_backed_view_modification_sparse(adata, backing_h5ad, sparse_format):
#     adata[:, 1] = 0  # Make it a little sparse
#     adata.X = sparse_format(adata.X)
#     adata.write(backing_h5ad)
#     backed_adata = ad.read_h5ad(backing_h5ad, backed=True)

#     backed_view = backed_adata[[1,2], :]
#     backed_view.X = 0
#     assert np.all(backed_adata.X[[1,2], :] == 0)