File: test_base.py

package info (click to toggle)
python-anndata 0.12.0~rc1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,704 kB
  • sloc: python: 19,721; makefile: 22; sh: 14
file content (756 lines) | stat: -rw-r--r-- 26,301 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
from __future__ import annotations

import re
import warnings
from itertools import product
from typing import TYPE_CHECKING

import numpy as np
import pandas as pd
import pytest
from numpy import ma
from scipy import sparse as sp
from scipy.sparse import csr_matrix, issparse

import anndata as ad
from anndata import AnnData, ImplicitModificationWarning
from anndata._settings import settings
from anndata.tests.helpers import assert_equal, gen_adata, get_multiindex_columns_df

if TYPE_CHECKING:
    from pathlib import Path
    from typing import Literal

# some test objects that we use below
adata_dense = AnnData(np.array([[1, 2], [3, 4]]))
adata_dense.layers["test"] = adata_dense.X
adata_sparse = AnnData(
    csr_matrix([[0, 2, 3], [0, 5, 6]]),
    dict(obs_names=["s1", "s2"], anno1=["c1", "c2"]),
    dict(var_names=["a", "b", "c"]),
)


def test_creation():
    AnnData(np.array([[1, 2], [3, 4]]))
    AnnData(np.array([[1, 2], [3, 4]]), {}, {})
    AnnData(ma.array([[1, 2], [3, 4]]), uns=dict(mask=[0, 1, 1, 0]))
    AnnData(sp.eye(2, format="csr"))
    AnnData(sp.csr_array([[1, 0], [0, 1]]))
    X = np.array([[1, 2, 3], [4, 5, 6]])
    adata = AnnData(
        X=X,
        obs=dict(Obs=["A", "B"]),
        var=dict(Feat=["a", "b", "c"]),
        obsm=dict(X_pca=np.array([[1, 2], [3, 4]])),
        raw=dict(X=X, var=dict(var_names=["a", "b", "c"])),
    )

    assert adata.raw.X.tolist() == X.tolist()
    assert adata.raw.var_names.tolist() == ["a", "b", "c"]

    # init with empty data matrix
    shape = (3, 5)
    adata = AnnData(None, uns=dict(test=np.array((3, 3))), shape=shape)
    assert adata.X is None
    assert adata.shape == shape
    assert "test" in adata.uns


@pytest.mark.parametrize(
    ("src", "src_arg", "dim_msg"),
    [
        pytest.param(
            "X",
            adata_dense.X,
            "`{dim}` must have as many rows as `X` has {mat_dim}s",
            id="x",
        ),
        pytest.param(
            "shape", (2, 2), "`shape` is inconsistent with `{dim}`", id="shape"
        ),
    ],
)
@pytest.mark.parametrize("dim", ["obs", "var"])
@pytest.mark.parametrize(
    ("dim_arg", "msg"),
    [
        pytest.param(
            lambda _: dict(TooLong=[1, 2, 3, 4]),
            "Length of values (4) does not match length of index (2)",
            id="too_long_col",
        ),
        pytest.param(
            lambda dim: {f"{dim}_names": ["a", "b", "c"]}, None, id="too_many_names"
        ),
        pytest.param(
            lambda _: pd.DataFrame(index=["a", "b", "c"]), None, id="too_long_df"
        ),
    ],
)
def test_creation_error(src, src_arg, dim_msg, dim, dim_arg, msg: str | None):
    if msg is None:
        mat_dim = "row" if dim == "obs" else "column"
        msg = dim_msg.format(dim=dim, mat_dim=mat_dim)
    with pytest.raises(ValueError, match=re.escape(msg)):
        AnnData(**{src: src_arg, dim: dim_arg(dim)})


def test_invalid_X():
    with pytest.raises(
        ValueError,
        match=r"X needs to be of one of <class 'numpy.ndarray'>.*not <class 'str'>\.",
    ):
        AnnData("string is not a valid X")


def test_create_with_dfs():
    X = np.ones((6, 3))
    obs = pd.DataFrame(dict(cat_anno=pd.Categorical(["a", "a", "a", "a", "b", "a"])))
    obs_copy = obs.copy()
    adata = AnnData(X=X, obs=obs)
    assert obs.index.equals(obs_copy.index)
    assert obs.index.astype(str).equals(adata.obs.index)


def test_create_from_df():
    df = pd.DataFrame(np.ones((3, 2)), index=["a", "b", "c"], columns=["A", "B"])
    ad = AnnData(df)
    assert df.values.tolist() == ad.X.tolist()
    assert df.columns.tolist() == ad.var_names.tolist()
    assert df.index.tolist() == ad.obs_names.tolist()


@pytest.mark.parametrize("attr", ["X", "obs", "obsm"])
def test_error_create_from_multiindex_df(attr):
    df = get_multiindex_columns_df((100, 20))
    val = df if attr != "obsm" else {"df": df}
    with pytest.raises(ValueError, match=r"MultiIndex columns are not supported"):
        AnnData(**{attr: val}, shape=(100, 10))


def test_create_from_sparse_df():
    s = sp.random(20, 30, density=0.2, format="csr")
    obs_names = [f"obs{i}" for i in range(20)]
    var_names = [f"var{i}" for i in range(30)]
    df = pd.DataFrame.sparse.from_spmatrix(s, index=obs_names, columns=var_names)
    a = AnnData(df)
    b = AnnData(s, obs=pd.DataFrame(index=obs_names), var=pd.DataFrame(index=var_names))
    assert_equal(a, b)
    assert issparse(a.X)


def test_create_from_df_with_obs_and_var():
    df = pd.DataFrame(np.ones((3, 2)), index=["a", "b", "c"], columns=["A", "B"])
    obs = pd.DataFrame(np.ones((3, 1)), index=df.index, columns=["C"])
    var = pd.DataFrame(np.ones((2, 1)), index=df.columns, columns=["D"])
    ad = AnnData(df, obs=obs, var=var)
    assert df.values.tolist() == ad.X.tolist()
    assert df.columns.tolist() == ad.var_names.tolist()
    assert df.index.tolist() == ad.obs_names.tolist()
    assert obs.equals(ad.obs)
    assert var.equals(ad.var)

    with pytest.raises(ValueError, match=r"Index of obs must match index of X."):
        AnnData(df, obs=obs.reset_index())
    with pytest.raises(ValueError, match=r"Index of var must match columns of X."):
        AnnData(df, var=var.reset_index())


def test_matching_int_index():
    adata = AnnData(
        pd.DataFrame(dict(a=[0.0, 0.5]), index=[0, 1]), obs=pd.DataFrame(index=[0, 1])
    )
    pd.testing.assert_index_equal(adata.obs_names, pd.Index(["0", "1"]))


def test_from_df_and_dict():
    df = pd.DataFrame(dict(a=[0.1, 0.2, 0.3], b=[1.1, 1.2, 1.3]))
    adata = AnnData(df, dict(species=pd.Categorical(["a", "b", "a"])))
    assert adata.obs["species"].values.tolist() == ["a", "b", "a"]


def test_df_warnings():
    df = pd.DataFrame(dict(A=[1, 2, 3], B=[1.0, 2.0, 3.0]), index=["a", "b", "c"])
    with pytest.warns(UserWarning, match=r"X.*dtype float64"):
        adata = AnnData(df)
    with pytest.warns(UserWarning, match=r"X.*dtype float64"):
        adata.X = df


@pytest.mark.parametrize("attr", ["X", "layers", "obsm", "varm", "obsp", "varp"])
@pytest.mark.parametrize("when", ["init", "assign"])
def test_convert_matrix(attr, when):
    """Test that initializing or assigning aligned arrays to a np.matrix converts it."""
    with warnings.catch_warnings():
        warnings.filterwarnings(
            "ignore", r"the matrix.*not.*recommended", PendingDeprecationWarning
        )
        mat = np.matrix([[1, 2], [3, 0]])

    direct = attr in {"X"}

    with pytest.warns(ImplicitModificationWarning, match=r"np\.ndarray"):
        if when == "init":
            adata = (
                AnnData(**{attr: mat})
                if direct
                else AnnData(shape=(2, 2), **{attr: {"a": mat}})
            )
        elif when == "assign":
            adata = AnnData(shape=(2, 2))
            if direct:
                setattr(adata, attr, mat)
            else:
                getattr(adata, attr)["a"] = mat
        else:
            raise ValueError(when)

    arr = getattr(adata, attr) if direct else getattr(adata, attr)["a"]
    assert isinstance(arr, np.ndarray), f"{arr} is not an array"
    assert not isinstance(arr, np.matrix), f"{arr} is still a matrix"


def test_attr_deletion():
    full = gen_adata((30, 30))
    # Empty has just X, obs_names, var_names
    empty = AnnData(None, obs=full.obs[[]], var=full.var[[]])
    for attr in ["X", "obs", "var", "obsm", "varm", "obsp", "varp", "layers", "uns"]:
        delattr(full, attr)
        assert_equal(getattr(full, attr), getattr(empty, attr))
    assert_equal(full, empty, exact=True)


def test_names():
    adata = AnnData(
        np.array([[1, 2, 3], [4, 5, 6]]),
        dict(obs_names=["A", "B"]),
        dict(var_names=["a", "b", "c"]),
    )

    assert adata.obs_names.tolist() == "A B".split()
    assert adata.var_names.tolist() == "a b c".split()

    adata = AnnData(np.array([[1, 2], [3, 4], [5, 6]]), var=dict(var_names=["a", "b"]))
    assert adata.var_names.tolist() == ["a", "b"]


@pytest.mark.parametrize(
    ("names", "after"),
    [
        pytest.param(["a", "b"], None, id="list"),
        pytest.param(
            pd.Series(["AAD", "CCA"], name="barcodes"), "barcodes", id="Series-str"
        ),
        pytest.param(pd.Series(["x", "y"], name=0), None, id="Series-int"),
    ],
)
@pytest.mark.parametrize("attr", ["obs_names", "var_names"])
def test_setting_index_names(names, after, attr):
    adata = adata_dense.copy()
    assert getattr(adata, attr).name is None
    setattr(adata, attr, names)
    assert getattr(adata, attr).name == after
    if hasattr(names, "name"):
        assert names.name is not None

    # Testing for views
    new = adata[:, :]
    assert new.is_view
    setattr(new, attr, names)
    assert_equal(new, adata, exact=True)
    assert not new.is_view


@pytest.mark.parametrize("attr", ["obs_names", "var_names"])
def test_setting_index_names_error(attr):
    orig = adata_sparse[:2, :2]
    adata = adata_sparse[:2, :2]
    assert getattr(adata, attr).name is None
    with pytest.raises(ValueError, match=rf"AnnData expects \.{attr[:3]}\.index\.name"):
        setattr(adata, attr, pd.Index(["x", "y"], name=0))
    assert adata.is_view
    assert getattr(adata, attr).tolist() != ["x", "y"]
    assert getattr(adata, attr).tolist() == getattr(orig, attr).tolist()
    assert_equal(orig, adata, exact=True)


@pytest.mark.parametrize("dim", ["obs", "var"])
def test_setting_dim_index(dim):
    index_attr = f"{dim}_names"
    mapping_attr = f"{dim}m"

    orig = gen_adata((5, 5))
    orig.raw = orig.copy()
    curr = orig.copy()
    view = orig[:, :]
    new_idx = pd.Index(list("abcde"), name="letters")

    setattr(curr, index_attr, new_idx)
    pd.testing.assert_index_equal(getattr(curr, index_attr), new_idx)
    pd.testing.assert_index_equal(getattr(curr, mapping_attr)["df"].index, new_idx)
    pd.testing.assert_index_equal(getattr(curr, mapping_attr).dim_names, new_idx)
    pd.testing.assert_index_equal(curr.obs_names, curr.raw.obs_names)

    # Testing view behaviour
    setattr(view, index_attr, new_idx)
    assert not view.is_view
    pd.testing.assert_index_equal(getattr(view, index_attr), new_idx)
    pd.testing.assert_index_equal(getattr(view, mapping_attr)["df"].index, new_idx)
    pd.testing.assert_index_equal(getattr(view, mapping_attr).dim_names, new_idx)
    with pytest.raises(AssertionError):
        pd.testing.assert_index_equal(
            getattr(view, index_attr), getattr(orig, index_attr)
        )
    assert_equal(view, curr, exact=True)

    # test case in #459
    fake_m = pd.DataFrame(curr.X.T, index=getattr(curr, index_attr))
    getattr(curr, mapping_attr)["df2"] = fake_m


def test_indices_dtypes():
    adata = AnnData(
        np.array([[1, 2, 3], [4, 5, 6]]),
        dict(obs_names=["A", "B"]),
        dict(var_names=["a", "b", "c"]),
    )
    adata.obs_names = ["ö", "a"]
    assert adata.obs_names.tolist() == ["ö", "a"]


def test_slicing():
    adata = AnnData(np.array([[1, 2, 3], [4, 5, 6]]))

    # assert adata[:, 0].X.tolist() == adata.X[:, 0].tolist()  # No longer the case

    assert adata[0, 0].X.tolist() == np.reshape(1, (1, 1)).tolist()
    assert adata[0, :].X.tolist() == np.reshape([1, 2, 3], (1, 3)).tolist()
    assert adata[:, 0].X.tolist() == np.reshape([1, 4], (2, 1)).tolist()

    assert adata[:, [0, 1]].X.tolist() == [[1, 2], [4, 5]]
    assert adata[:, np.array([0, 2])].X.tolist() == [[1, 3], [4, 6]]
    assert adata[:, np.array([False, True, True])].X.tolist() == [
        [2, 3],
        [5, 6],
    ]
    assert adata[:, 1:3].X.tolist() == [[2, 3], [5, 6]]

    assert adata[0:2, :][:, 0:2].X.tolist() == [[1, 2], [4, 5]]
    assert adata[0:1, :][:, 0:2].X.tolist() == np.reshape([1, 2], (1, 2)).tolist()
    assert adata[0, :][:, 0].X.tolist() == np.reshape(1, (1, 1)).tolist()
    assert adata[:, 0:2][0:2, :].X.tolist() == [[1, 2], [4, 5]]
    assert adata[:, 0:2][0:1, :].X.tolist() == np.reshape([1, 2], (1, 2)).tolist()
    assert adata[:, 0][0, :].X.tolist() == np.reshape(1, (1, 1)).tolist()


def test_boolean_slicing():
    adata = AnnData(np.array([[1, 2, 3], [4, 5, 6]]))

    obs_selector = np.array([True, False], dtype=bool)
    vars_selector = np.array([True, False, False], dtype=bool)
    assert adata[obs_selector, :][:, vars_selector].X.tolist() == [[1]]
    assert adata[:, vars_selector][obs_selector, :].X.tolist() == [[1]]
    assert adata[obs_selector, :][:, 0].X.tolist() == [[1]]
    assert adata[:, 0][obs_selector, :].X.tolist() == [[1]]
    assert adata[0, :][:, vars_selector].X.tolist() == [[1]]
    assert adata[:, vars_selector][0, :].X.tolist() == [[1]]

    obs_selector = np.array([True, False], dtype=bool)
    vars_selector = np.array([True, True, False], dtype=bool)
    assert adata[obs_selector, :][:, vars_selector].X.tolist() == [[1, 2]]
    assert adata[:, vars_selector][obs_selector, :].X.tolist() == [[1, 2]]
    assert adata[obs_selector, :][:, 0:2].X.tolist() == [[1, 2]]
    assert adata[:, 0:2][obs_selector, :].X.tolist() == [[1, 2]]
    assert adata[0, :][:, vars_selector].X.tolist() == [[1, 2]]
    assert adata[:, vars_selector][0, :].X.tolist() == [[1, 2]]

    obs_selector = np.array([True, True], dtype=bool)
    vars_selector = np.array([True, True, False], dtype=bool)
    assert adata[obs_selector, :][:, vars_selector].X.tolist() == [
        [1, 2],
        [4, 5],
    ]
    assert adata[:, vars_selector][obs_selector, :].X.tolist() == [
        [1, 2],
        [4, 5],
    ]
    assert adata[obs_selector, :][:, 0:2].X.tolist() == [[1, 2], [4, 5]]
    assert adata[:, 0:2][obs_selector, :].X.tolist() == [[1, 2], [4, 5]]
    assert adata[0:2, :][:, vars_selector].X.tolist() == [[1, 2], [4, 5]]
    assert adata[:, vars_selector][0:2, :].X.tolist() == [[1, 2], [4, 5]]


def test_oob_boolean_slicing():
    len1, len2 = np.random.choice(100, 2, replace=False)
    with pytest.raises(IndexError) as e:
        AnnData(np.empty((len1, 100)))[np.random.randint(0, 2, len2, dtype=bool), :]
    assert str(len1) in str(e.value)
    assert str(len2) in str(e.value)

    len1, len2 = np.random.choice(100, 2, replace=False)
    with pytest.raises(IndexError) as e:
        AnnData(np.empty((100, len1)))[:, np.random.randint(0, 2, len2, dtype=bool)]
    assert str(len1) in str(e.value)
    assert str(len2) in str(e.value)


def test_slicing_strings():
    adata = AnnData(
        np.array([[1, 2, 3], [4, 5, 6]]),
        dict(obs_names=["A", "B"]),
        dict(var_names=["a", "b", "c"]),
    )

    assert adata["A", "a"].X.tolist() == [[1]]
    assert adata["A", :].X.tolist() == [[1, 2, 3]]
    assert adata[:, "a"].X.tolist() == [[1], [4]]
    assert adata[:, ["a", "b"]].X.tolist() == [[1, 2], [4, 5]]
    assert adata[:, np.array(["a", "c"])].X.tolist() == [[1, 3], [4, 6]]
    assert adata[:, "b":"c"].X.tolist() == [[2, 3], [5, 6]]

    with pytest.raises(KeyError):
        _ = adata[:, "X"]
    with pytest.raises(KeyError):
        _ = adata["X", :]
    with pytest.raises(KeyError):
        _ = adata["A":"X", :]
    with pytest.raises(KeyError):
        _ = adata[:, "a":"X"]

    # Test if errors are helpful
    with pytest.raises(KeyError, match=r"not_in_var"):
        adata[:, ["A", "B", "not_in_var"]]
    with pytest.raises(KeyError, match=r"not_in_obs"):
        adata[["A", "B", "not_in_obs"], :]


def test_slicing_series():
    adata = AnnData(
        np.array([[1, 2], [3, 4], [5, 6]]),
        dict(obs_names=["A", "B", "C"]),
        dict(var_names=["a", "b"]),
    )
    df = pd.DataFrame(dict(a=["1", "2", "2"]))
    df1 = pd.DataFrame(dict(b=["1", "2"]))
    assert adata[df["a"].values == "2"].X.tolist() == adata[df["a"] == "2"].X.tolist()
    assert (
        adata[:, df1["b"].values == "2"].X.tolist()
        == adata[:, df1["b"] == "2"].X.tolist()
    )


def test_strings_to_categoricals():
    adata = AnnData(
        np.array([[1, 2], [3, 4], [5, 6], [7, 8]]), dict(k=["a", "a", "b", "b"])
    )
    adata.strings_to_categoricals()
    assert adata.obs["k"].cat.categories.tolist() == ["a", "b"]


def test_slicing_remove_unused_categories():
    adata = AnnData(
        np.array([[1, 2], [3, 4], [5, 6], [7, 8]]), dict(k=["a", "a", "b", "b"])
    )
    adata._sanitize()
    assert adata[2:4].obs["k"].cat.categories.tolist() == ["b"]


def test_slicing_dont_remove_unused_categories():
    with settings.override(remove_unused_categories=False):
        adata = AnnData(
            np.array([[1, 2], [3, 4], [5, 6], [7, 8]]), dict(k=["a", "a", "b", "b"])
        )
        adata._sanitize()
        assert adata[2:4].obs["k"].cat.categories.tolist() == ["a", "b"]


def test_no_uniqueness_check_gives_repeat_indices():
    with settings.override(check_uniqueness=False):
        obs_names = ["0", "0", "1", "1"]
        with warnings.catch_warnings():
            warnings.simplefilter("error")
            adata = AnnData(
                np.array([[1, 2], [3, 4], [5, 6], [7, 8]]),
                obs=pd.DataFrame(index=obs_names),
            )
    assert adata.obs_names.values.tolist() == obs_names


def test_get_subset_annotation():
    adata = AnnData(
        np.array([[1, 2, 3], [4, 5, 6]]),
        dict(S=["A", "B"]),
        dict(F=["a", "b", "c"]),
    )

    assert adata[0, 0].obs["S"].tolist() == ["A"]
    assert adata[0, 0].var["F"].tolist() == ["a"]


def test_append_col():
    adata = AnnData(np.array([[1, 2, 3], [4, 5, 6]]))

    adata.obs["new"] = [1, 2]
    # this worked in the initial AnnData, but not with a dataframe
    # adata.obs[['new2', 'new3']] = [['A', 'B'], ['c', 'd']]

    with pytest.raises(
        ValueError, match="Length of values.*does not match length of index"
    ):
        adata.obs["new4"] = "far too long".split()


def test_delete_col():
    adata = AnnData(np.array([[1, 2, 3], [4, 5, 6]]), dict(o1=[1, 2], o2=[3, 4]))
    assert ["o1", "o2"] == adata.obs_keys()

    del adata.obs["o1"]
    assert ["o2"] == adata.obs_keys()
    assert [3, 4] == adata.obs["o2"].tolist()


def test_set_obs():
    adata = AnnData(np.array([[1, 2, 3], [4, 5, 6]]))

    adata.obs = pd.DataFrame(dict(a=[3, 4]))
    assert adata.obs_names.tolist() == [0, 1]

    with pytest.raises(ValueError, match="but this AnnData has shape"):
        adata.obs = pd.DataFrame(dict(a=[3, 4, 5]))
    with pytest.raises(ValueError, match="Can only assign pd.DataFrame"):
        adata.obs = dict(a=[1, 2])


def test_multicol():
    adata = AnnData(np.array([[1, 2, 3], [4, 5, 6]]))
    # 'c' keeps the columns as should be
    adata.obsm["c"] = np.array([[0.0, 1.0], [2, 3]])
    assert adata.obsm_keys() == ["c"]
    assert adata.obsm["c"].tolist() == [[0.0, 1.0], [2, 3]]


def test_n_obs():
    adata = AnnData(np.array([[1, 2], [3, 4], [5, 6]]))
    assert adata.n_obs == 3
    adata1 = adata[:2]
    assert adata1.n_obs == 2


def test_equality_comparisons():
    adata1 = AnnData(np.array([[1, 2], [3, 4], [5, 6]]))
    adata2 = AnnData(np.array([[1, 2], [3, 4], [5, 6]]))
    with pytest.raises(NotImplementedError):
        adata1 == adata1
    with pytest.raises(NotImplementedError):
        adata1 == adata2
    with pytest.raises(NotImplementedError):
        adata1 != adata2
    with pytest.raises(NotImplementedError):
        adata1 == 1
    with pytest.raises(NotImplementedError):
        adata1 != 1


def test_rename_categories():
    X = np.ones((6, 3))
    obs = pd.DataFrame(dict(cat_anno=pd.Categorical(["a", "a", "a", "a", "b", "a"])))
    adata = AnnData(X=X, obs=obs)
    adata.uns["tool"] = {}
    adata.uns["tool"]["cat_array"] = np.rec.fromarrays(
        [np.ones(2) for cat in adata.obs["cat_anno"].cat.categories],
        dtype=[(cat, "float32") for cat in adata.obs["cat_anno"].cat.categories],
    )
    adata.uns["tool"]["params"] = dict(groupby="cat_anno")

    new_categories = ["c", "d"]
    with warnings.catch_warnings():
        warnings.simplefilter("error")
        adata.rename_categories("cat_anno", new_categories)

    assert list(adata.obs["cat_anno"].cat.categories) == new_categories
    assert list(adata.uns["tool"]["cat_array"].dtype.names) == new_categories


def test_pickle():
    import pickle

    adata = AnnData()
    adata2 = pickle.loads(pickle.dumps(adata))
    assert adata2.obsm.parent is adata2


def test_to_df_dense():
    X_df = adata_dense.to_df()
    layer_df = adata_dense.to_df(layer="test")

    np.testing.assert_array_equal(adata_dense.layers["test"], layer_df.values)
    np.testing.assert_array_equal(adata_dense.X, X_df.values)
    pd.testing.assert_index_equal(X_df.columns, layer_df.columns)
    pd.testing.assert_index_equal(X_df.index, layer_df.index)


def test_convenience():
    adata = adata_sparse.copy()
    adata.layers["x2"] = adata.X * 2
    adata.var["anno2"] = ["p1", "p2", "p3"]
    adata.raw = adata.copy()
    adata.X = adata.X / 2
    adata_dense = adata.copy()
    adata_dense.X = adata_dense.X.toarray()

    def assert_same_op_result(a1, a2, op):
        r1 = op(a1)
        r2 = op(a2)
        assert np.all(r1 == r2)
        assert type(r1) is type(r2)

    assert np.allclose(adata.obs_vector("b"), np.array([1.0, 2.5]))
    assert np.allclose(adata.raw.obs_vector("c"), np.array([3, 6]))
    assert np.all(adata.obs_vector("anno1") == np.array(["c1", "c2"]))
    assert np.allclose(adata.var_vector("s1"), np.array([0, 1.0, 1.5]))
    assert np.allclose(adata.raw.var_vector("s2"), np.array([0, 5, 6]))

    for obs_k, layer in product(["a", "b", "c", "anno1"], [None, "x2"]):
        assert_same_op_result(
            adata, adata_dense, lambda x: x.obs_vector(obs_k, layer=layer)
        )

    for obs_k in ["a", "b", "c"]:
        assert_same_op_result(adata, adata_dense, lambda x: x.raw.obs_vector(obs_k))

    for var_k, layer in product(["s1", "s2", "anno2"], [None, "x2"]):
        assert_same_op_result(
            adata, adata_dense, lambda x: x.var_vector(var_k, layer=layer)
        )

    for var_k in ["s1", "s2", "anno2"]:
        assert_same_op_result(adata, adata_dense, lambda x: x.raw.var_vector(var_k))


def test_1d_slice_dtypes():
    N, M = 10, 20
    obs_df = pd.DataFrame(
        dict(
            cat=pd.Categorical(np.arange(N, dtype=int)),
            int=np.arange(N, dtype=int),
            float=np.arange(N, dtype=float),
            obj=[str(i) for i in np.arange(N, dtype=int)],
        ),
        index=[f"cell{i}" for i in np.arange(N, dtype=int)],
    )
    var_df = pd.DataFrame(
        dict(
            cat=pd.Categorical(np.arange(M, dtype=int)),
            int=np.arange(M, dtype=int),
            float=np.arange(M, dtype=float),
            obj=[str(i) for i in np.arange(M, dtype=int)],
        ),
        index=[f"gene{i}" for i in np.arange(M, dtype=int)],
    )
    adata = AnnData(X=np.random.random((N, M)), obs=obs_df, var=var_df)

    new_obs_df = pd.DataFrame(index=adata.obs_names)
    for k in obs_df.columns:
        new_obs_df[k] = adata.obs_vector(k)
        assert new_obs_df[k].dtype == obs_df[k].dtype
    assert np.all(new_obs_df == obs_df)
    new_var_df = pd.DataFrame(index=adata.var_names)
    for k in var_df.columns:
        new_var_df[k] = adata.var_vector(k)
        assert new_var_df[k].dtype == var_df[k].dtype
    assert np.all(new_var_df == var_df)


def test_to_df_sparse():
    X = adata_sparse.X.toarray()
    df = adata_sparse.to_df()
    assert df.values.tolist() == X.tolist()


def test_to_df_no_X():
    adata = AnnData(
        obs=pd.DataFrame(index=[f"cell-{i:02}" for i in range(20)]),
        var=pd.DataFrame(index=[f"gene-{i:02}" for i in range(30)]),
        layers={"present": np.ones((20, 30))},
    )
    v = adata[:10]

    with pytest.raises(ValueError, match=r"X is None"):
        _ = adata.to_df()
    with pytest.raises(ValueError, match=r"X is None"):
        _ = v.to_df()

    expected = pd.DataFrame(
        np.ones(adata.shape), index=adata.obs_names, columns=adata.var_names
    )
    actual = adata.to_df(layer="present")

    pd.testing.assert_frame_equal(actual, expected)

    view_expected = pd.DataFrame(
        np.ones(v.shape), index=v.obs_names, columns=v.var_names
    )
    view_actual = v.to_df(layer="present")

    pd.testing.assert_frame_equal(view_actual, view_expected)


def test_copy():
    adata_copy = adata_sparse.copy()

    def assert_eq_not_id(a, b):
        assert a is not b
        assert issparse(a) == issparse(b)
        if issparse(a):
            assert np.all(a.data == b.data)
            assert np.all(a.indices == b.indices)
            assert np.all(a.indptr == b.indptr)
        else:
            assert np.all(a == b)

    assert adata_sparse is not adata_copy
    assert_eq_not_id(adata_sparse.X, adata_copy.X)
    for attr in "layers var obs obsm varm".split():
        map_sprs = getattr(adata_sparse, attr)
        map_copy = getattr(adata_copy, attr)
        assert map_sprs is not map_copy
        if attr not in {"obs", "var"}:
            # check that we don’t create too many references
            assert getattr(adata_copy, f"_{attr}") is map_copy._data
        assert_eq_not_id(map_sprs.keys(), map_copy.keys())
        for key in map_sprs.keys():
            assert_eq_not_id(map_sprs[key], map_copy[key])


def test_to_memory_no_copy():
    adata = gen_adata((3, 5))
    mem = adata.to_memory()

    assert mem.X is adata.X
    # Currently does not hold for `obs`, `var`, but should in future
    for key in adata.layers:
        assert mem.layers[key] is adata.layers[key]
    for key in adata.obsm:
        assert mem.obsm[key] is adata.obsm[key]
    for key in adata.varm:
        assert mem.varm[key] is adata.varm[key]
    for key in adata.obsp:
        assert mem.obsp[key] is adata.obsp[key]
    for key in adata.varp:
        assert mem.varp[key] is adata.varp[key]


@pytest.mark.parametrize("axis", ["obs", "var"])
@pytest.mark.parametrize("elem_type", ["p", "m"])
def test_create_adata_from_single_axis_elem(
    axis: Literal["obs", "var"], elem_type: Literal["m", "p"], tmp_path: Path
):
    d = dict(
        a=np.zeros((10, 10)),
    )
    in_memory = AnnData(**{f"{axis}{elem_type}": d})
    assert in_memory.shape == (10, 0) if axis == "obs" else (0, 10)
    in_memory.write_h5ad(tmp_path / "adata.h5ad")
    from_disk = ad.read_h5ad(tmp_path / "adata.h5ad")
    ad.tests.helpers.assert_equal(from_disk, in_memory)