File: test_concatenate_disk.py

package info (click to toggle)
python-anndata 0.12.0~rc1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,704 kB
  • sloc: python: 19,721; makefile: 22; sh: 14
file content (251 lines) | stat: -rw-r--r-- 7,627 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
from __future__ import annotations

from collections.abc import Mapping
from typing import TYPE_CHECKING

import numpy as np
import pandas as pd
import pytest
from scipy import sparse

from anndata import AnnData, concat
from anndata._core.merge import _resolve_axis
from anndata.experimental.merge import as_group, concat_on_disk
from anndata.io import read_elem, write_elem
from anndata.tests.helpers import assert_equal, gen_adata
from anndata.utils import asarray

if TYPE_CHECKING:
    from pathlib import Path
    from typing import Literal


GEN_ADATA_OOC_CONCAT_ARGS = dict(
    obsm_types=(
        sparse.csr_matrix,
        np.ndarray,
        pd.DataFrame,
    ),
    varm_types=(sparse.csr_matrix, np.ndarray, pd.DataFrame),
    layers_types=(sparse.csr_matrix, np.ndarray, pd.DataFrame),
)


@pytest.fixture(params=[0, 1])
def axis(request) -> Literal[0, 1]:
    return request.param


@pytest.fixture(params=["array", "sparse", "sparse_array"])
def array_type(request) -> Literal["array", "sparse", "sparse_array"]:
    return request.param


@pytest.fixture(params=["inner", "outer"])
def join_type(request) -> Literal["inner", "outer"]:
    return request.param


@pytest.fixture(params=["zarr", "h5ad"])
def file_format(request) -> Literal["zarr", "h5ad"]:
    return request.param


# 1000 is enough to guarantee that the feature is being used
@pytest.fixture(params=[1_000, 100_000_000])
def max_loaded_elems(request) -> int:
    return request.param


def _adatas_to_paths(adatas, tmp_path, file_format):
    """
    Gets list of adatas, writes them and returns their paths as zarr
    """
    paths = None

    if isinstance(adatas, Mapping):
        paths = {}
        for k, v in adatas.items():
            p = tmp_path / (f"{k}." + file_format)
            write_elem(as_group(p, mode="a"), "", v)
            paths[k] = p
    else:
        paths = []
        for i, a in enumerate(adatas):
            p = tmp_path / (f"{i}." + file_format)
            write_elem(as_group(p, mode="a"), "", a)
            paths += [p]
    return paths


def assert_eq_concat_on_disk(
    adatas,
    tmp_path: Path,
    file_format: Literal["zarr", "h5ad"],
    max_loaded_elems: int | None = None,
    *args,
    **kwargs,
):
    # create one from the concat function
    res1 = concat(adatas, *args, **kwargs)
    # create one from the on disk concat function
    paths = _adatas_to_paths(adatas, tmp_path, file_format)
    out_name = tmp_path / f"out.{file_format}"
    if max_loaded_elems is not None:
        kwargs["max_loaded_elems"] = max_loaded_elems
    concat_on_disk(paths, out_name, *args, **kwargs)
    res2 = read_elem(as_group(out_name, mode="r"))
    assert_equal(res1, res2, exact=False)


def get_array_type(array_type, axis):
    if array_type == "sparse":
        return sparse.csr_matrix if axis == 0 else sparse.csc_matrix
    if array_type == "sparse_array":
        return sparse.csr_array if axis == 0 else sparse.csc_array
    if array_type == "array":
        return asarray
    msg = f"array_type {array_type} not implemented"
    raise NotImplementedError(msg)


@pytest.mark.parametrize("reindex", [True, False], ids=["reindex", "no_reindex"])
def test_anndatas(
    *,
    axis: Literal[0, 1],
    array_type: Literal["array", "sparse", "sparse_array"],
    join_type: Literal["inner", "outer"],
    tmp_path: Path,
    max_loaded_elems: int,
    file_format: Literal["zarr", "h5ad"],
    reindex: bool,
):
    _, off_axis_name = _resolve_axis(1 - axis)
    random_axes = {0, 1} if reindex else {axis}
    sparse_fmt = "csr" if axis == 0 else "csc"
    kw = (
        GEN_ADATA_OOC_CONCAT_ARGS
        if not reindex
        else dict(
            obsm_types=(get_array_type("sparse", 1 - axis), np.ndarray, pd.DataFrame),
            varm_types=(get_array_type("sparse", 1 - axis), np.ndarray, pd.DataFrame),
            layers_types=(get_array_type("sparse", axis), np.ndarray, pd.DataFrame),
        )
    )

    adatas = []
    for i in range(5):
        M, N = (np.random.randint(1, 100) if a in random_axes else 50 for a in (0, 1))
        a = gen_adata(
            (M, N), X_type=get_array_type(array_type, axis), sparse_fmt=sparse_fmt, **kw
        )
        # ensure some names overlap, others do not, for the off-axis so that inner/outer is properly tested
        off_names = getattr(a, f"{off_axis_name}_names").array
        off_names[1::2] = f"{i}-" + off_names[1::2]
        setattr(a, f"{off_axis_name}_names", off_names)
        adatas.append(a)

    assert_eq_concat_on_disk(
        adatas,
        tmp_path,
        file_format,
        max_loaded_elems,
        axis=axis,
        join=join_type,
    )


def test_concat_ordered_categoricals_retained(tmp_path, file_format):
    a = AnnData(
        X=np.ones((5, 1)),
        obs=pd.DataFrame(
            {
                "cat_ordered": pd.Categorical(list("aabcd"), ordered=True),
            },
            index=[f"cell{i:02}" for i in range(5)],
        ),
    )
    b = AnnData(
        X=np.ones((5, 1)),
        obs=pd.DataFrame(
            {
                "cat_ordered": pd.Categorical(list("abcdd"), ordered=True),
            },
            index=[f"cell{i:02}" for i in range(5, 10)],
        ),
    )

    adatas = [a, b]
    assert_eq_concat_on_disk(adatas, tmp_path, file_format)


@pytest.fixture
def xxxm_adatas():
    def gen_index(n):
        return [f"cell{i}" for i in range(n)]

    return [
        AnnData(
            X=sparse.csr_matrix((3, 5)),
            obs=pd.DataFrame(index=gen_index(3)),
            obsm={
                "dense": np.arange(6).reshape(3, 2),
                "sparse": sparse.csr_matrix(np.arange(6).reshape(3, 2)),
                "df": pd.DataFrame(
                    {
                        "a": np.arange(3),
                        "b": list("abc"),
                        "c": pd.Categorical(list("aab")),
                    },
                    index=gen_index(3),
                ),
            },
        ),
        AnnData(
            X=sparse.csr_matrix((4, 10)),
            obs=pd.DataFrame(index=gen_index(4)),
            obsm=dict(
                dense=np.arange(12).reshape(4, 3),
                df=pd.DataFrame(dict(a=np.arange(3, 7)), index=gen_index(4)),
            ),
        ),
        AnnData(
            X=sparse.csr_matrix((2, 100)),
            obs=pd.DataFrame(index=gen_index(2)),
            obsm={
                "sparse": np.arange(8).reshape(2, 4),
                "dense": np.arange(4, 8).reshape(2, 2),
                "df": pd.DataFrame(
                    {
                        "a": np.arange(7, 9),
                        "b": list("cd"),
                        "c": pd.Categorical(list("ab")),
                    },
                    index=gen_index(2),
                ),
            },
        ),
    ]


def test_concatenate_xxxm(xxxm_adatas, tmp_path, file_format, join_type):
    if join_type == "outer":
        for i in range(len(xxxm_adatas)):
            xxxm_adatas[i] = xxxm_adatas[i].T
            xxxm_adatas[i].X = sparse.csr_matrix(xxxm_adatas[i].X)
    assert_eq_concat_on_disk(xxxm_adatas, tmp_path, file_format, join=join_type)


def test_output_dir_exists(tmp_path):
    in_pth = tmp_path / "in.h5ad"
    out_pth = tmp_path / "does_not_exist" / "out.h5ad"

    AnnData(X=np.ones((5, 1))).write_h5ad(in_pth)

    with pytest.raises(FileNotFoundError, match=f"{out_pth}"):
        concat_on_disk([in_pth], out_pth)


def test_failure_w_no_args(tmp_path):
    with pytest.raises(ValueError, match=r"No objects to concatenate"):
        concat_on_disk([], tmp_path / "out.h5ad")