File: test_dask.py

package info (click to toggle)
python-anndata 0.12.0~rc1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,704 kB
  • sloc: python: 19,721; makefile: 22; sh: 14
file content (374 lines) | stat: -rw-r--r-- 11,389 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
"""
For tests using dask
"""

from __future__ import annotations

from typing import TYPE_CHECKING

import numpy as np
import pandas as pd
import pytest
from scipy import sparse

import anndata as ad
from anndata._core.anndata import AnnData
from anndata.compat import CupyArray, DaskArray
from anndata.experimental.merge import as_group
from anndata.tests.helpers import (
    GEN_ADATA_DASK_ARGS,
    as_dense_cupy_dask_array,
    as_dense_dask_array,
    as_sparse_dask_array,
    assert_equal,
    gen_adata,
)

if TYPE_CHECKING:
    from pathlib import Path
    from typing import Literal


pytest.importorskip("dask.array")


@pytest.fixture(
    params=[
        [(2000, 1000), (100, 100)],
        [(200, 100), (100, 100)],
        [(200, 100), (100, 100)],
        [(20, 10), (1, 1)],
        [(20, 10), (1, 1)],
    ]
)
def sizes(request):
    return request.param


@pytest.fixture
def adata(sizes):
    import dask.array as da
    import numpy as np

    (M, N), chunks = sizes
    X = da.random.random((M, N), chunks=chunks)
    obs = pd.DataFrame(
        {"batch": np.random.choice(["a", "b"], M)},
        index=[f"cell{i:03d}" for i in range(M)],
    )
    var = pd.DataFrame(index=[f"gene{i:03d}" for i in range(N)])

    return AnnData(X, obs=obs, var=var)


def test_dask_X_view():
    import dask.array as da

    M, N = 50, 30
    adata = ad.AnnData(
        obs=pd.DataFrame(index=[f"cell{i:02}" for i in range(M)]),
        var=pd.DataFrame(index=[f"gene{i:02}" for i in range(N)]),
    )
    adata.X = da.ones((M, N))
    view = adata[:30]
    view.copy()


def test_dask_write(adata, tmp_path, diskfmt):
    import dask.array as da
    import numpy as np

    pth = tmp_path / f"test_write.{diskfmt}"
    write = lambda x, y: getattr(x, f"write_{diskfmt}")(y)
    read = lambda x: getattr(ad, f"read_{diskfmt}")(x)

    M, N = adata.X.shape
    adata.obsm["a"] = da.random.random((M, 10))
    adata.obsm["b"] = da.random.random((M, 10))
    adata.varm["a"] = da.random.random((N, 10))

    orig = adata
    write(orig, pth)
    curr = read(pth)

    with pytest.raises(AssertionError):
        assert_equal(curr.obsm["a"], curr.obsm["b"])

    assert_equal(curr.varm["a"], orig.varm["a"])
    assert_equal(curr.obsm["a"], orig.obsm["a"])

    assert isinstance(curr.X, np.ndarray)
    assert isinstance(curr.obsm["a"], np.ndarray)
    assert isinstance(curr.varm["a"], np.ndarray)
    assert isinstance(orig.X, DaskArray)
    assert isinstance(orig.obsm["a"], DaskArray)
    assert isinstance(orig.varm["a"], DaskArray)


@pytest.mark.xdist_group("dask")
def test_dask_distributed_write(
    adata: AnnData,
    tmp_path: Path,
    diskfmt: Literal["h5ad", "zarr"],
    local_cluster_addr: str,
) -> None:
    import dask.array as da
    import dask.distributed as dd
    import numpy as np

    pth = tmp_path / f"test_write.{diskfmt}"
    g = as_group(pth, mode="w")

    with dd.Client(local_cluster_addr):
        M, N = adata.X.shape
        adata.obsm["a"] = da.random.random((M, 10))
        adata.obsm["b"] = da.random.random((M, 10))
        adata.varm["a"] = da.random.random((N, 10))
        orig = adata
        if diskfmt == "h5ad":
            with pytest.raises(ValueError, match=r"Cannot write dask arrays to hdf5"):
                ad.io.write_elem(g, "", orig)
            return
        ad.io.write_elem(g, "", orig)
        # TODO: See https://github.com/zarr-developers/zarr-python/issues/2716
        g = as_group(pth, mode="r")
        curr = ad.io.read_elem(g)

    with pytest.raises(AssertionError):
        assert_equal(curr.obsm["a"], curr.obsm["b"])

    assert_equal(curr.varm["a"], orig.varm["a"])
    assert_equal(curr.obsm["a"], orig.obsm["a"])

    assert isinstance(curr.X, np.ndarray)
    assert isinstance(curr.obsm["a"], np.ndarray)
    assert isinstance(curr.varm["a"], np.ndarray)
    assert isinstance(orig.X, DaskArray)
    assert isinstance(orig.obsm["a"], DaskArray)
    assert isinstance(orig.varm["a"], DaskArray)


def test_dask_to_memory_check_array_types(adata, tmp_path, diskfmt):
    import dask.array as da
    import numpy as np

    pth = tmp_path / f"test_write.{diskfmt}"
    write = lambda x, y: getattr(x, f"write_{diskfmt}")(y)
    read = lambda x: getattr(ad, f"read_{diskfmt}")(x)

    M, N = adata.X.shape
    adata.obsm["a"] = da.random.random((M, 10))
    adata.obsm["b"] = da.random.random((M, 10))
    adata.varm["a"] = da.random.random((N, 10))

    orig = adata
    write(orig, pth)
    curr = read(pth)

    assert isinstance(orig.X, DaskArray)
    assert isinstance(orig.obsm["a"], DaskArray)
    assert isinstance(orig.varm["a"], DaskArray)

    mem = orig.to_memory()

    with pytest.raises(AssertionError):
        assert_equal(curr.obsm["a"], curr.obsm["b"])

    assert_equal(curr.varm["a"], orig.varm["a"])
    assert_equal(curr.obsm["a"], orig.obsm["a"])
    assert_equal(mem.obsm["a"], orig.obsm["a"])
    assert_equal(mem.varm["a"], orig.varm["a"])

    assert isinstance(curr.X, np.ndarray)
    assert isinstance(curr.obsm["a"], np.ndarray)
    assert isinstance(curr.varm["a"], np.ndarray)
    assert isinstance(mem.X, np.ndarray)
    assert isinstance(mem.obsm["a"], np.ndarray)
    assert isinstance(mem.varm["a"], np.ndarray)
    assert isinstance(orig.X, DaskArray)
    assert isinstance(orig.obsm["a"], DaskArray)
    assert isinstance(orig.varm["a"], DaskArray)


def test_dask_to_memory_copy_check_array_types(adata, tmp_path, diskfmt):
    import dask.array as da
    import numpy as np

    pth = tmp_path / f"test_write.{diskfmt}"
    write = lambda x, y: getattr(x, f"write_{diskfmt}")(y)
    read = lambda x: getattr(ad, f"read_{diskfmt}")(x)

    M, N = adata.X.shape
    adata.obsm["a"] = da.random.random((M, 10))
    adata.obsm["b"] = da.random.random((M, 10))
    adata.varm["a"] = da.random.random((N, 10))

    orig = adata
    write(orig, pth)
    curr = read(pth)

    mem = orig.to_memory(copy=True)

    with pytest.raises(AssertionError):
        assert_equal(curr.obsm["a"], curr.obsm["b"])

    assert_equal(curr.varm["a"], orig.varm["a"])
    assert_equal(curr.obsm["a"], orig.obsm["a"])
    assert_equal(mem.obsm["a"], orig.obsm["a"])
    assert_equal(mem.varm["a"], orig.varm["a"])

    assert isinstance(curr.X, np.ndarray)
    assert isinstance(curr.obsm["a"], np.ndarray)
    assert isinstance(curr.varm["a"], np.ndarray)
    assert isinstance(mem.X, np.ndarray)
    assert isinstance(mem.obsm["a"], np.ndarray)
    assert isinstance(mem.varm["a"], np.ndarray)
    assert isinstance(orig.X, DaskArray)
    assert isinstance(orig.obsm["a"], DaskArray)
    assert isinstance(orig.varm["a"], DaskArray)


def test_dask_copy_check_array_types(adata):
    import dask.array as da

    M, N = adata.X.shape
    adata.obsm["a"] = da.random.random((M, 10))
    adata.obsm["b"] = da.random.random((M, 10))
    adata.varm["a"] = da.random.random((N, 10))

    orig = adata
    curr = adata.copy()

    with pytest.raises(AssertionError):
        assert_equal(curr.obsm["a"], curr.obsm["b"])

    assert_equal(curr.varm["a"], orig.varm["a"])
    assert_equal(curr.obsm["a"], orig.obsm["a"])

    assert isinstance(curr.X, DaskArray)
    assert isinstance(curr.obsm["a"], DaskArray)
    assert isinstance(curr.varm["a"], DaskArray)
    assert isinstance(orig.X, DaskArray)
    assert isinstance(orig.obsm["a"], DaskArray)
    assert isinstance(orig.varm["a"], DaskArray)


def test_assign_X(adata):
    """Check if assignment works"""
    import dask.array as da
    import numpy as np

    from anndata.compat import DaskArray

    adata.X = da.ones(adata.X.shape)
    prev_type = type(adata.X)
    adata_copy = adata.copy()

    adata.X = -1 * da.ones(adata.X.shape)
    assert prev_type is DaskArray
    assert type(adata_copy.X) is DaskArray
    assert_equal(adata.X, -1 * np.ones(adata.X.shape))
    assert_equal(adata_copy.X, np.ones(adata.X.shape))


# Test if dask arrays turn into numpy arrays after to_memory is called
@pytest.mark.parametrize(
    ("array_func", "mem_type"),
    [
        pytest.param(as_dense_dask_array, np.ndarray, id="dense_dask_array"),
        pytest.param(as_sparse_dask_array, sparse.csr_matrix, id="sparse_dask_array"),
        pytest.param(
            as_dense_cupy_dask_array,
            CupyArray,
            id="cupy_dense_dask_array",
            marks=pytest.mark.gpu,
        ),
    ],
)
def test_dask_to_memory_unbacked(array_func, mem_type):
    orig = gen_adata((15, 10), X_type=array_func, **GEN_ADATA_DASK_ARGS)
    orig.uns = {"da": {"da": array_func(np.ones((4, 12)))}}

    assert isinstance(orig.X, DaskArray)
    assert isinstance(orig.obsm["da"], DaskArray)
    assert isinstance(orig.layers["da"], DaskArray)
    assert isinstance(orig.varm["da"], DaskArray)
    assert isinstance(orig.uns["da"]["da"], DaskArray)

    curr = orig.to_memory()

    assert_equal(orig, curr)
    assert isinstance(curr.X, mem_type)
    assert isinstance(curr.obsm["da"], np.ndarray)
    assert isinstance(curr.varm["da"], np.ndarray)
    assert isinstance(curr.layers["da"], np.ndarray)
    assert isinstance(curr.uns["da"]["da"], mem_type)
    assert isinstance(orig.X, DaskArray)
    assert isinstance(orig.obsm["da"], DaskArray)
    assert isinstance(orig.layers["da"], DaskArray)
    assert isinstance(orig.varm["da"], DaskArray)
    assert isinstance(orig.uns["da"]["da"], DaskArray)


# Test if dask arrays turn into numpy arrays after to_memory is called
def test_dask_to_memory_copy_unbacked():
    import numpy as np

    orig = gen_adata((15, 10), X_type=as_dense_dask_array, **GEN_ADATA_DASK_ARGS)
    orig.uns = {"da": {"da": as_dense_dask_array(np.ones(12))}}

    curr = orig.to_memory(copy=True)

    assert_equal(orig, curr)
    assert isinstance(curr.X, np.ndarray)
    assert isinstance(curr.obsm["da"], np.ndarray)
    assert isinstance(curr.varm["da"], np.ndarray)
    assert isinstance(curr.layers["da"], np.ndarray)
    assert isinstance(curr.uns["da"]["da"], np.ndarray)
    assert isinstance(orig.X, DaskArray)
    assert isinstance(orig.obsm["da"], DaskArray)
    assert isinstance(orig.layers["da"], DaskArray)
    assert isinstance(orig.varm["da"], DaskArray)
    assert isinstance(orig.uns["da"]["da"], DaskArray)


def test_to_memory_raw():
    import dask.array as da
    import numpy as np

    orig = gen_adata((20, 10), **GEN_ADATA_DASK_ARGS)
    orig.X = da.ones((20, 10))

    with_raw = orig[:, ::2].copy()
    with_raw.raw = orig.copy()

    assert isinstance(with_raw.raw.X, DaskArray)
    assert isinstance(with_raw.raw.varm["da"], DaskArray)

    curr = with_raw.to_memory()

    assert isinstance(with_raw.raw.X, DaskArray)
    assert isinstance(with_raw.raw.varm["da"], DaskArray)
    assert isinstance(curr.raw.X, np.ndarray)
    assert isinstance(curr.raw.varm["da"], np.ndarray)


def test_to_memory_copy_raw():
    import dask.array as da
    import numpy as np

    orig = gen_adata((20, 10), **GEN_ADATA_DASK_ARGS)
    orig.X = da.ones((20, 10))

    with_raw = orig[:, ::2].copy()
    with_raw.raw = orig.copy()

    assert isinstance(with_raw.raw.X, DaskArray)
    assert isinstance(with_raw.raw.varm["da"], DaskArray)

    curr = with_raw.to_memory(copy=True)

    assert isinstance(with_raw.raw.X, DaskArray)
    assert isinstance(with_raw.raw.varm["da"], DaskArray)
    assert isinstance(curr.raw.X, np.ndarray)
    assert isinstance(curr.raw.varm["da"], np.ndarray)