1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
from __future__ import annotations
from typing import TYPE_CHECKING
import pytest
import anndata as ad
if TYPE_CHECKING:
import pandas as pd
pytest.importorskip("pytest_memray")
# ------------------------------------------------------------------------------
# Some test data
# ------------------------------------------------------------------------------
@pytest.fixture(params=["layers", "obsm", "varm"])
def mapping_name(request):
return request.param
@pytest.fixture(params=["obs", "var"])
def attr_name(request):
return request.param
@pytest.fixture(params=[True, False])
def give_chunks(request):
return request.param
# ------------------------------------------------------------------------------
# The test functions
# ------------------------------------------------------------------------------
# Does some stuff so that dask can cache the
# subclasscheck before the run.
@pytest.fixture
def _alloc_cache():
import dask.array as da
N = 2**6
size = ((N, N), (N, N))
adata = ad.AnnData(
da.random.random(*size),
**{
"layers": dict(m=da.random.random(*size)),
"obsm": dict(m=da.random.random(*size)),
"obs": dict(m=da.random.random(N)),
"var": dict(m=da.random.random(N)),
"varm": dict(m=da.random.random(*size)),
},
)
subset = adata[:10, :][:, :10]
for mn in ["varm", "obsm", "layers"]:
m = getattr(subset, mn)["m"]
m[0, 0] = 100
_ = adata.to_memory(copy=False)
# Theoretically this is expected to allocate:
# N*N*4 bytes per matrix (we have 2).
# N*4 bytes per index (we have 1).
# N*N*(2**3) + N*(2**2) bytes
# N*N*(2**3) + N*(2**2) bytes
# 2**19 + 2**10
# if we put a 2 factor on 2**19
# the results seems more accurate with the experimental results
# For example from dask.random we allocate 1mb
@pytest.mark.usefixtures("_alloc_cache")
@pytest.mark.limit_memory("1.5 MB")
def test_size_of_view(mapping_name, give_chunks):
import dask.array as da
N = 2**8
size = ((N, N), (N, N)) if give_chunks else ((N, N), "auto")
adata = ad.AnnData(
da.random.random(*size),
**{mapping_name: dict(m=da.random.random(*size))},
)
_ = adata.to_memory(copy=False)
# Normally should expect something around 90 kbs
# Pandas does some indexing stuff that requires more sometimes
# since the array we allocated would be 4mb for both arrays + 2mb
# Thus, if we allocated it all it should at least have 6mb
# experimentally we should at least have 10mb
# for index this should be ok
@pytest.mark.usefixtures("_alloc_cache")
@pytest.mark.limit_memory("1.5 MB")
def test_modify_view_mapping_component_memory(mapping_name, give_chunks):
import dask.array as da
N = 2**8
M = 2**9
size = ((M, M), (M, M)) if give_chunks else ((M, M), "auto")
adata = ad.AnnData(
da.random.random(*size),
**{mapping_name: dict(m=da.random.random(*size))},
)
subset = adata[:N, :N]
assert subset.is_view
m = getattr(subset, mapping_name)["m"]
m[0, 0] = 100
# Normally should expect something around 90 kbs
# Pandas does some indexing stuff that requires more sometimes
# since the array we allocated would be 4mb for both arrays + 2mb
# Thus, if we allocated it all it should at least have 6mb
# experimentally we should at least have 10mb
# for index this should be ok
@pytest.mark.usefixtures("_alloc_cache")
@pytest.mark.limit_memory("1.5 MB")
def test_modify_view_X_memory(mapping_name, give_chunks):
import dask.array as da
N = 2**8
M = 2**9
size = ((M, M), (M, M)) if give_chunks else ((M, M), "auto")
adata = ad.AnnData(
da.random.random(*size),
**{mapping_name: dict(m=da.random.random(*size))},
)
subset = adata[:N, :N]
assert subset.is_view
m = subset.X
with pytest.warns(
ad.ImplicitModificationWarning,
match=r"Trying to modify attribute `.X` of view, initializing view as actual.",
):
m[0, 0] = 100
# Normally should expect something around 90 kbs
# Pandas does some indexing stuff that requires more sometimes
# since the array we allocated would be 4mb for both arrays + 2mb
# Thus, if we allocated it all it should at least have 6mb
# experimentally we should at least have 10mb
# for index this should be ok
@pytest.mark.usefixtures("_alloc_cache")
@pytest.mark.limit_memory("1.5 MB")
def test_modify_view_mapping_obs_var_memory(attr_name, give_chunks):
import dask.array as da
N = 2**8
M = 2**9
size = ((M, M), (M, M)) if give_chunks else ((M, M), "auto")
adata = ad.AnnData(
da.random.random(*size),
**{attr_name: dict(m=da.random.random(M))},
)
subset = adata[:N, :N]
assert subset.is_view
m: pd.Series = getattr(subset, attr_name)["m"]
m.iloc[0] = 100
|