File: test_io_conversion.py

package info (click to toggle)
python-anndata 0.12.0~rc1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,704 kB
  • sloc: python: 19,721; makefile: 22; sh: 14
file content (125 lines) | stat: -rw-r--r-- 3,980 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
"""\
This file contains tests for conversion made during io.
"""

from __future__ import annotations

import h5py
import numpy as np
import pytest
from scipy import sparse

import anndata as ad
from anndata.compat import CSMatrix
from anndata.tests.helpers import assert_equal, gen_adata


@pytest.fixture(
    params=[sparse.csr_matrix, sparse.csc_matrix, np.array],
    ids=["scipy-csr", "scipy-csc", "np-array"],
)
def mtx_format(request):
    return request.param


@pytest.fixture(
    params=[sparse.csr_matrix, sparse.csc_matrix],
    ids=["scipy-csr", "scipy-csc"],
)
def spmtx_format(request):
    return request.param


@pytest.fixture(params=[("raw/X",), ("X",), ("X", "raw/X")])
def to_convert(request):
    return request.param


def test_sparse_to_dense_disk(tmp_path, mtx_format, to_convert):
    mem_pth = tmp_path / "orig.h5ad"
    dense_from_mem_pth = tmp_path / "dense_mem.h5ad"
    dense_from_disk_pth = tmp_path / "dense_disk.h5ad"
    mem = gen_adata((50, 50), mtx_format)
    mem.raw = mem.copy()

    mem.write_h5ad(mem_pth)
    disk = ad.read_h5ad(mem_pth, backed="r")

    mem.write_h5ad(dense_from_mem_pth, as_dense=to_convert)
    disk.write_h5ad(dense_from_disk_pth, as_dense=to_convert)

    with h5py.File(dense_from_mem_pth, "r") as f:
        for k in to_convert:
            assert isinstance(f[k], h5py.Dataset)
    with h5py.File(dense_from_disk_pth, "r") as f:
        for k in to_convert:
            assert isinstance(f[k], h5py.Dataset)

    for backed in [None, "r"]:
        from_mem = ad.read_h5ad(dense_from_mem_pth, backed=backed)
        from_disk = ad.read_h5ad(dense_from_disk_pth, backed=backed)
        assert_equal(mem, from_mem)
        assert_equal(mem, from_disk)
        assert_equal(disk, from_mem)
        assert_equal(disk, from_disk)


def test_sparse_to_dense_inplace(tmp_path, spmtx_format):
    pth = tmp_path / "adata.h5ad"
    orig = gen_adata((50, 50), spmtx_format)
    orig.raw = orig.copy()
    orig.write(pth)
    backed = ad.read_h5ad(pth, backed="r+")
    backed.write(as_dense=("X", "raw/X"))
    new = ad.read_h5ad(pth)

    assert_equal(orig, new)
    assert_equal(backed, new)

    assert isinstance(new.X, np.ndarray)
    assert isinstance(new.raw.X, np.ndarray)
    assert isinstance(orig.X, spmtx_format)
    assert isinstance(orig.raw.X, spmtx_format)
    assert isinstance(backed.X, h5py.Dataset)
    assert isinstance(backed.raw.X, h5py.Dataset)


def test_sparse_to_dense_errors(tmp_path):
    adata = ad.AnnData(X=sparse.random(50, 50, format="csr"))
    adata.layers["like_X"] = adata.X.copy()
    with pytest.raises(ValueError, match=r"Cannot specify writing"):
        adata.write_h5ad(tmp_path / "failure.h5ad", as_dense=("raw/X",))
    with pytest.raises(NotImplementedError):
        adata.write_h5ad(tmp_path / "failure.h5ad", as_dense=("raw", "X"))
    with pytest.raises(NotImplementedError):
        adata.write_h5ad(tmp_path / "failure.h5ad", as_dense=("layers/like_X",))


def test_dense_to_sparse_memory(tmp_path, spmtx_format, to_convert):
    dense_path = tmp_path / "dense.h5ad"
    orig = gen_adata((50, 50), np.array)
    orig.raw = orig.copy()
    orig.write_h5ad(dense_path)
    assert not isinstance(orig.X, CSMatrix)
    assert not isinstance(orig.raw.X, CSMatrix)

    curr = ad.read_h5ad(dense_path, as_sparse=to_convert, as_sparse_fmt=spmtx_format)

    if "X" in to_convert:
        assert isinstance(curr.X, spmtx_format)
    if "raw/X" in to_convert:
        assert isinstance(curr.raw.X, spmtx_format)

    assert_equal(orig, curr)


def test_dense_to_sparse_errors(tmp_path):
    dense_pth = tmp_path / "dense.h5ad"
    adata = ad.AnnData(X=np.ones((50, 50)))
    adata.layers["like_X"] = adata.X.copy()
    adata.write(dense_pth)

    with pytest.raises(NotImplementedError):
        ad.read_h5ad(dense_pth, as_sparse=("X",), as_sparse_fmt=sparse.coo_matrix)
    with pytest.raises(NotImplementedError):
        ad.read_h5ad(dense_pth, as_sparse=("layers/like_X",))