1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
|
"""
Tests that each element in an anndata is written correctly
"""
from __future__ import annotations
import re
from pathlib import Path
from typing import TYPE_CHECKING
import h5py
import numpy as np
import pandas as pd
import pytest
import zarr
from packaging.version import Version
from scipy import sparse
import anndata as ad
from anndata._io.specs import _REGISTRY, IOSpec, get_spec
from anndata._io.specs.registry import IORegistryError
from anndata._io.zarr import open_write_group
from anndata.compat import CSArray, CSMatrix, ZarrGroup, _read_attr, is_zarr_v2
from anndata.experimental import read_elem_lazy
from anndata.io import read_elem, write_elem
from anndata.tests.helpers import (
as_cupy,
as_cupy_sparse_dask_array,
as_dense_cupy_dask_array,
assert_equal,
gen_adata,
)
if TYPE_CHECKING:
from pathlib import Path
from typing import Literal, TypeVar
from anndata.compat import H5Group
G = TypeVar("G", H5Group, ZarrGroup)
@pytest.fixture
def store(diskfmt, tmp_path) -> H5Group | ZarrGroup:
if diskfmt == "h5ad":
file = h5py.File(tmp_path / "test.h5ad", "w")
store = file["/"]
elif diskfmt == "zarr":
store = open_write_group(tmp_path / "test.zarr")
else:
pytest.fail(f"Unknown store type: {diskfmt}")
try:
yield store
finally:
if diskfmt == "h5ad":
file.close()
sparse_formats = ["csr", "csc"]
SIZE = 2500
DEFAULT_SHAPE = (SIZE, SIZE * 2)
@pytest.fixture(params=sparse_formats)
def sparse_format(request: pytest.FixtureRequest) -> Literal["csr", "csc"]:
return request.param
def create_dense_store(
store: str, *, shape: tuple[int, ...] = DEFAULT_SHAPE
) -> H5Group | ZarrGroup:
X = np.random.randn(*shape)
write_elem(store, "X", X)
return store
def create_sparse_store(
sparse_format: Literal["csc", "csr"], store: G, shape=DEFAULT_SHAPE
) -> G:
"""Returns a store
Parameters
----------
sparse_format
store
Returns
-------
A store with a key, `X` that is simply a sparse matrix, and `X_dask` where that same array is wrapped by dask
"""
import dask.array as da
X = sparse.random(
shape[0],
shape[1],
format=sparse_format,
density=0.01,
random_state=np.random.default_rng(),
)
X_dask = da.from_array(
X,
chunks=(100 if format == "csr" else SIZE, SIZE * 2 if format == "csr" else 100),
)
write_elem(store, "X", X)
write_elem(store, "X_dask", X_dask)
return store
@pytest.mark.parametrize(
("value", "encoding_type"),
[
pytest.param(None, "null", id="none"),
pytest.param("hello world", "string", id="py_str"),
pytest.param(np.str_("hello world"), "string", id="np_str"),
pytest.param(np.array([1, 2, 3]), "array", id="np_arr_int"),
pytest.param(
np.array(["hello", "world"], dtype=object), "string-array", id="np_arr_str"
),
pytest.param(1, "numeric-scalar", id="py_int"),
pytest.param(True, "numeric-scalar", id="py_bool"),
pytest.param(1.0, "numeric-scalar", id="py_float"),
pytest.param({"a": 1}, "dict", id="py_dict"),
pytest.param(gen_adata((3, 2)), "anndata", id="anndata"),
pytest.param(
sparse.random(5, 3, format="csr", density=0.5),
"csr_matrix",
id="sp_mat_csr",
),
pytest.param(
sparse.random(5, 3, format="csc", density=0.5),
"csc_matrix",
id="sp_mat_csc",
),
pytest.param(pd.DataFrame({"a": [1, 2, 3]}), "dataframe", id="pd_df"),
pytest.param(
pd.Categorical(list("aabccedd") + [pd.NA]),
"categorical",
id="pd_cat_np_str",
),
pytest.param(
pd.Categorical(list("aabccedd"), ordered=True),
"categorical",
id="pd_cat_np_str_ord",
),
pytest.param(
pd.array(list("aabccedd") + [pd.NA], dtype="string").astype("category"),
"categorical",
id="pd_cat_pd_str",
),
pytest.param(
pd.Categorical([1, 2, 1, 3], ordered=True), "categorical", id="pd_cat_num"
),
pytest.param(
pd.array(["hello", "world"], dtype="string"),
"nullable-string-array",
id="pd_arr_str",
),
pytest.param(
pd.array(["hello", "world", pd.NA], dtype="string"),
"nullable-string-array",
id="pd_arr_str_mask",
),
pytest.param(
pd.arrays.IntegerArray(
np.ones(5, dtype=int), mask=np.array([True, False, True, False, True])
),
"nullable-integer",
id="pd_arr_int_mask",
),
pytest.param(pd.array([1, 2, 3]), "nullable-integer", id="pd_arr_int"),
pytest.param(
pd.arrays.BooleanArray(
np.random.randint(0, 2, size=5, dtype=bool),
mask=np.random.randint(0, 2, size=5, dtype=bool),
),
"nullable-boolean",
id="pd_arr_bool_mask",
),
pytest.param(
pd.array([True, False, True, True]), "nullable-boolean", id="pd_arr_bool"
),
pytest.param(
zarr.ones((100, 100), chunks=(10, 10)),
"array",
id="zarr_dense_array",
),
pytest.param(
create_dense_store(
h5py.File("test1.h5", mode="w", driver="core", backing_store=False)
)["X"],
"array",
id="h5_dense_array",
),
# pytest.param(bytes, b"some bytes", "bytes", id="py_bytes"), # Does not work for zarr
# TODO consider how specific encodings should be. Should we be fully describing the written type?
# Currently the info we add is: "what you wouldn't be able to figure out yourself"
# but that's not really a solid rule.
# pytest.param(bool, True, "bool", id="py_bool"),
# pytest.param(bool, np.bool_(False), "bool", id="np_bool"),
],
)
def test_io_spec(store, value, encoding_type):
# zarr v3 can't write recarray
# https://github.com/zarr-developers/zarr-python/issues/2134
if (
ad.settings.zarr_write_format == 3
and encoding_type == "anndata"
and "O_recarray" in value.uns
):
del value.uns["O_recarray"]
with ad.settings.override(allow_write_nullable_strings=True):
key = f"key_for_{encoding_type}"
write_elem(store, key, value, dataset_kwargs={})
assert encoding_type == _read_attr(store[key].attrs, "encoding-type")
from_disk = read_elem(store[key])
assert_equal(value, from_disk)
assert get_spec(store[key]) == _REGISTRY.get_spec(value)
@pytest.mark.parametrize(
("value", "encoding_type"),
[
pytest.param(np.asarray(1), "numeric-scalar", id="scalar_int"),
pytest.param(np.asarray(1.0), "numeric-scalar", id="scalar_float"),
pytest.param(np.asarray(True), "numeric-scalar", id="scalar_bool"), # noqa: FBT003
pytest.param(np.asarray("test"), "string", id="scalar_string"),
],
)
def test_io_spec_compressed_scalars(store: G, value: np.ndarray, encoding_type: str):
key = f"key_for_{encoding_type}"
write_elem(
store, key, value, dataset_kwargs={"compression": "gzip", "compression_opts": 5}
)
assert encoding_type == _read_attr(store[key].attrs, "encoding-type")
from_disk = read_elem(store[key])
assert_equal(value, from_disk)
# Can't instantiate cupy types at the top level, so converting them within the test
@pytest.mark.gpu
@pytest.mark.parametrize(
("value", "encoding_type"),
[
(np.array([1, 2, 3]), "array"),
(np.arange(12).reshape(4, 3), "array"),
(sparse.random(5, 3, format="csr", density=0.5), "csr_matrix"),
(sparse.random(5, 3, format="csc", density=0.5), "csc_matrix"),
],
)
@pytest.mark.parametrize("as_dask", [False, True])
def test_io_spec_cupy(store, value, encoding_type, as_dask):
if as_dask:
if isinstance(value, CSMatrix):
value = as_cupy_sparse_dask_array(value, format=encoding_type[:3])
else:
value = as_dense_cupy_dask_array(value)
else:
value = as_cupy(value)
key = f"key_for_{encoding_type}"
write_elem(store, key, value, dataset_kwargs={})
assert encoding_type == _read_attr(store[key].attrs, "encoding-type")
from_disk = as_cupy(read_elem(store[key]))
assert_equal(value, from_disk)
assert get_spec(store[key]) == _REGISTRY.get_spec(value)
def test_dask_write_sparse(sparse_format, store):
x_sparse_store = create_sparse_store(sparse_format, store)
X_from_disk = read_elem(x_sparse_store["X"])
X_dask_from_disk = read_elem(x_sparse_store["X_dask"])
assert_equal(X_from_disk, X_dask_from_disk)
assert_equal(dict(x_sparse_store["X"].attrs), dict(x_sparse_store["X_dask"].attrs))
assert x_sparse_store["X_dask/indptr"].dtype == np.int64
assert x_sparse_store["X_dask/indices"].dtype == np.int64
def test_read_lazy_2d_dask(sparse_format, store):
arr_store = create_sparse_store(sparse_format, store)
X_dask_from_disk = read_elem_lazy(arr_store["X"])
X_from_disk = read_elem(arr_store["X"])
assert_equal(X_from_disk, X_dask_from_disk)
random_int_indices = np.random.randint(0, SIZE, (SIZE // 10,))
random_int_indices.sort()
index_slice = slice(0, SIZE // 10)
for index in [random_int_indices, index_slice]:
assert_equal(X_from_disk[index, :], X_dask_from_disk[index, :])
assert_equal(X_from_disk[:, index], X_dask_from_disk[:, index])
random_bool_mask = np.random.randn(SIZE) > 0
assert_equal(
X_from_disk[random_bool_mask, :], X_dask_from_disk[random_bool_mask, :]
)
random_bool_mask = np.random.randn(SIZE * 2) > 0
assert_equal(
X_from_disk[:, random_bool_mask], X_dask_from_disk[:, random_bool_mask]
)
assert arr_store["X_dask/indptr"].dtype == np.int64
assert arr_store["X_dask/indices"].dtype == np.int64
@pytest.mark.parametrize(
("n_dims", "chunks"),
[
(1, (100,)),
(1, (400,)),
(2, (100, 100)),
(2, (400, 400)),
(2, (200, 400)),
(1, None),
(2, None),
(2, (400, -1)),
(2, (400, None)),
],
)
def test_read_lazy_subsets_nd_dask(store, n_dims, chunks):
arr_store = create_dense_store(store, shape=DEFAULT_SHAPE[:n_dims])
X_dask_from_disk = read_elem_lazy(arr_store["X"], chunks=chunks)
X_from_disk = read_elem(arr_store["X"])
assert_equal(X_from_disk, X_dask_from_disk)
random_int_indices = np.random.randint(0, SIZE, (SIZE // 10,))
random_int_indices.sort()
random_bool_mask = np.random.randn(SIZE) > 0
index_slice = slice(0, SIZE // 10)
for index in [random_int_indices, index_slice, random_bool_mask]:
assert_equal(X_from_disk[index], X_dask_from_disk[index])
@pytest.mark.xdist_group("dask")
def test_read_lazy_h5_cluster(
sparse_format: Literal["csr", "csc"], tmp_path: Path, local_cluster_addr: str
) -> None:
import dask.distributed as dd
with h5py.File(tmp_path / "test.h5", "w") as file:
store = file["/"]
arr_store = create_sparse_store(sparse_format, store)
X_dask_from_disk = read_elem_lazy(arr_store["X"])
X_from_disk = read_elem(arr_store["X"])
with dd.Client(local_cluster_addr):
assert_equal(X_from_disk, X_dask_from_disk)
def test_undersized_shape_to_default(store: H5Group | ZarrGroup):
shape = (3000, 50)
arr_store = create_dense_store(store, shape=shape)
X_dask_from_disk = read_elem_lazy(arr_store["X"])
assert (c < s for c, s in zip(X_dask_from_disk.chunksize, shape))
assert X_dask_from_disk.shape == shape
@pytest.mark.parametrize(
("arr_type", "chunks", "expected_chunksize"),
[
("dense", (100, 100), (100, 100)),
("csc", (SIZE, 10), (SIZE, 10)),
("csr", (10, SIZE * 2), (10, SIZE * 2)),
("csc", None, (SIZE, 1000)),
("csr", None, (1000, SIZE * 2)),
("csr", (10, -1), (10, SIZE * 2)),
("csc", (-1, 10), (SIZE, 10)),
("csr", (10, None), (10, SIZE * 2)),
("csc", (None, 10), (SIZE, 10)),
("csc", (None, None), DEFAULT_SHAPE),
("csr", (None, None), DEFAULT_SHAPE),
("csr", (-1, -1), DEFAULT_SHAPE),
("csc", (-1, -1), DEFAULT_SHAPE),
],
)
def test_read_lazy_2d_chunk_kwargs(
store: H5Group | ZarrGroup,
arr_type: Literal["csr", "csc", "dense"],
chunks: None | tuple[int | None, int | None],
expected_chunksize: tuple[int, int],
):
if arr_type == "dense":
arr_store = create_dense_store(store)
X_dask_from_disk = read_elem_lazy(arr_store["X"], chunks=chunks)
else:
arr_store = create_sparse_store(arr_type, store)
X_dask_from_disk = read_elem_lazy(arr_store["X"], chunks=chunks)
assert X_dask_from_disk.chunksize == expected_chunksize
X_from_disk = read_elem(arr_store["X"])
assert_equal(X_from_disk, X_dask_from_disk)
def test_read_lazy_bad_chunk_kwargs(tmp_path):
arr_type = "csr"
with h5py.File(tmp_path / "test.h5", "w") as file:
store = file["/"]
arr_store = create_sparse_store(arr_type, store)
with pytest.raises(
ValueError, match=r"`chunks` must be a tuple of two integers"
):
read_elem_lazy(arr_store["X"], chunks=(SIZE,))
with pytest.raises(ValueError, match=r"Only the major axis can be chunked"):
read_elem_lazy(arr_store["X"], chunks=(SIZE, 10))
@pytest.mark.parametrize("sparse_format", ["csr", "csc"])
def test_write_indptr_dtype_override(store, sparse_format):
X = sparse.random(
100,
100,
format=sparse_format,
density=0.1,
random_state=np.random.default_rng(),
)
write_elem(store, "X", X, dataset_kwargs=dict(indptr_dtype="int64"))
assert store["X/indptr"].dtype == np.int64
assert X.indptr.dtype == np.int32
np.testing.assert_array_equal(store["X/indptr"][...], X.indptr)
def test_io_spec_raw(store):
adata = gen_adata((3, 2))
adata.raw = adata.copy()
write_elem(store, "adata", adata)
assert "raw" == _read_attr(store["adata/raw"].attrs, "encoding-type")
from_disk = read_elem(store["adata"])
assert_equal(from_disk.raw, adata.raw)
def test_write_anndata_to_root(store):
adata = gen_adata((3, 2))
write_elem(store, "/", adata)
# TODO: see https://github.com/zarr-developers/zarr-python/issues/2716
if not is_zarr_v2() and isinstance(store, ZarrGroup):
store = zarr.open(store.store)
from_disk = read_elem(store)
assert "anndata" == _read_attr(store.attrs, "encoding-type")
assert_equal(from_disk, adata)
@pytest.mark.parametrize(
("attribute", "value"),
[
("encoding-type", "floob"),
("encoding-version", "10000.0"),
],
)
def test_read_iospec_not_found(store, attribute, value):
adata = gen_adata((3, 2))
write_elem(store, "/", adata)
store["obs"].attrs.update({attribute: value})
with pytest.raises(IORegistryError) as exc_info:
read_elem(store)
msg = str(exc_info.value)
assert "No read method registered for IOSpec" in msg
assert f"{attribute.replace('-', '_')}='{value}'" in msg
@pytest.mark.parametrize(
"obj",
[(b"x",)],
)
def test_write_io_error(store, obj):
full_pattern = re.compile(
rf"No method registered for writing {type(obj)} into .*Group"
)
with pytest.raises(IORegistryError, match=r"while writing key '/el'") as exc_info:
write_elem(store, "/el", obj)
msg = str(exc_info.value)
assert re.search(full_pattern, msg)
def test_write_nullable_string_error(store):
with pytest.raises(RuntimeError, match=r"allow_write_nullable_strings.*is False"):
write_elem(store, "/el", pd.array([""], dtype="string"))
def test_categorical_order_type(store):
# https://github.com/scverse/anndata/issues/853
cat = pd.Categorical([0, 1], ordered=True)
write_elem(store, "ordered", cat)
write_elem(store, "unordered", cat.set_ordered(False))
assert isinstance(read_elem(store["ordered"]).ordered, bool)
assert read_elem(store["ordered"]).ordered is True
assert isinstance(read_elem(store["unordered"]).ordered, bool)
assert read_elem(store["unordered"]).ordered is False
def test_override_specification():
"""
Test that trying to overwrite an existing encoding raises an error.
"""
from copy import deepcopy
registry = deepcopy(_REGISTRY)
with pytest.raises(TypeError):
@registry.register_write(
ZarrGroup, ad.AnnData, IOSpec("some new type", "0.1.0")
)
def _(store, key, adata):
pass
@pytest.mark.parametrize(
"value",
[
pytest.param({"a": 1}, id="dict"),
pytest.param(gen_adata((3, 2)), id="anndata"),
pytest.param(sparse.random(5, 3, format="csr", density=0.5), id="csr_matrix"),
pytest.param(sparse.random(5, 3, format="csc", density=0.5), id="csc_matrix"),
pytest.param(pd.DataFrame({"a": [1, 2, 3]}), id="dataframe"),
pytest.param(pd.Categorical(list("aabccedd")), id="categorical"),
pytest.param(
pd.Categorical(list("aabccedd"), ordered=True), id="categorical-ordered"
),
pytest.param(
pd.Categorical([1, 2, 1, 3], ordered=True), id="categorical-numeric"
),
pytest.param(
pd.arrays.IntegerArray(
np.ones(5, dtype=int), mask=np.array([True, False, True, False, True])
),
id="nullable-integer",
),
pytest.param(pd.array([1, 2, 3]), id="nullable-integer-no-nulls"),
pytest.param(
pd.arrays.BooleanArray(
np.random.randint(0, 2, size=5, dtype=bool),
mask=np.random.randint(0, 2, size=5, dtype=bool),
),
id="nullable-boolean",
),
pytest.param(
pd.array([True, False, True, True]), id="nullable-boolean-no-nulls"
),
],
)
def test_write_to_root(store, value):
"""
Test that elements which are written as groups can we written to the root group.
"""
# zarr v3 can't write recarray
# https://github.com/zarr-developers/zarr-python/issues/2134
if ad.settings.zarr_write_format == 3 and isinstance(value, ad.AnnData):
del value.uns["O_recarray"]
write_elem(store, "/", value)
# See: https://github.com/zarr-developers/zarr-python/issues/2716
if isinstance(store, ZarrGroup) and not is_zarr_v2():
store = zarr.open(store.store)
result = read_elem(store)
assert_equal(result, value)
@pytest.mark.parametrize("consolidated", [True, False])
def test_read_zarr_from_group(tmp_path, consolidated):
# https://github.com/scverse/anndata/issues/1056
pth = tmp_path / "test.zarr"
adata = gen_adata((3, 2))
z = open_write_group(pth)
write_elem(z, "table/table", adata)
if consolidated:
zarr.consolidate_metadata(z.store)
if consolidated:
read_func = zarr.open_consolidated
else:
read_func = zarr.open
z = read_func(pth)
expected = ad.read_zarr(z["table/table"])
assert_equal(adata, expected)
def test_dataframe_column_uniqueness(store):
repeated_cols = pd.DataFrame(np.ones((3, 2)), columns=["a", "a"])
with pytest.raises(
ValueError,
match=r"Found repeated column names: \['a'\]\. Column names must be unique\.",
):
write_elem(store, "repeated_cols", repeated_cols)
index_shares_col_name = pd.DataFrame(
{"col_name": [1, 2, 3]}, index=pd.Index([1, 3, 2], name="col_name")
)
with pytest.raises(
ValueError,
match=r"DataFrame\.index\.name \('col_name'\) is also used by a column whose values are different\.",
):
write_elem(store, "index_shares_col_name", index_shares_col_name)
index_shared_okay = pd.DataFrame(
{"col_name": [1, 2, 3]}, index=pd.Index([1, 2, 3], name="col_name")
)
write_elem(store, "index_shared_okay", index_shared_okay)
result = read_elem(store["index_shared_okay"])
assert_equal(result, index_shared_okay)
@pytest.mark.parametrize("copy_on_write", [True, False])
def test_io_pd_cow(store, copy_on_write):
if Version(pd.__version__) < Version("2"):
pytest.xfail("copy_on_write option is not available in pandas < 2")
# https://github.com/zarr-developers/numcodecs/issues/514
with pd.option_context("mode.copy_on_write", copy_on_write):
orig = gen_adata((3, 2))
write_elem(store, "adata", orig)
from_store = read_elem(store["adata"])
assert_equal(orig, from_store)
def test_read_sparse_array(
tmp_path: Path,
sparse_format: Literal["csr", "csc"],
diskfmt: Literal["h5ad", "zarr"],
):
path = tmp_path / f"test.{diskfmt.replace('ad', '')}"
a = sparse.random(100, 100, format=sparse_format)
if diskfmt == "zarr":
f = open_write_group(path, mode="a")
else:
f = h5py.File(path, "a")
ad.io.write_elem(f, "mtx", a)
ad.settings.use_sparse_array_on_read = True
mtx = ad.io.read_elem(f["mtx"])
assert issubclass(type(mtx), CSArray)
|