File: test_io_elementwise.py

package info (click to toggle)
python-anndata 0.12.0~rc1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,704 kB
  • sloc: python: 19,721; makefile: 22; sh: 14
file content (654 lines) | stat: -rw-r--r-- 21,499 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
"""
Tests that each element in an anndata is written correctly
"""

from __future__ import annotations

import re
from pathlib import Path
from typing import TYPE_CHECKING

import h5py
import numpy as np
import pandas as pd
import pytest
import zarr
from packaging.version import Version
from scipy import sparse

import anndata as ad
from anndata._io.specs import _REGISTRY, IOSpec, get_spec
from anndata._io.specs.registry import IORegistryError
from anndata._io.zarr import open_write_group
from anndata.compat import CSArray, CSMatrix, ZarrGroup, _read_attr, is_zarr_v2
from anndata.experimental import read_elem_lazy
from anndata.io import read_elem, write_elem
from anndata.tests.helpers import (
    as_cupy,
    as_cupy_sparse_dask_array,
    as_dense_cupy_dask_array,
    assert_equal,
    gen_adata,
)

if TYPE_CHECKING:
    from pathlib import Path
    from typing import Literal, TypeVar

    from anndata.compat import H5Group

    G = TypeVar("G", H5Group, ZarrGroup)


@pytest.fixture
def store(diskfmt, tmp_path) -> H5Group | ZarrGroup:
    if diskfmt == "h5ad":
        file = h5py.File(tmp_path / "test.h5ad", "w")
        store = file["/"]
    elif diskfmt == "zarr":
        store = open_write_group(tmp_path / "test.zarr")
    else:
        pytest.fail(f"Unknown store type: {diskfmt}")

    try:
        yield store
    finally:
        if diskfmt == "h5ad":
            file.close()


sparse_formats = ["csr", "csc"]
SIZE = 2500
DEFAULT_SHAPE = (SIZE, SIZE * 2)


@pytest.fixture(params=sparse_formats)
def sparse_format(request: pytest.FixtureRequest) -> Literal["csr", "csc"]:
    return request.param


def create_dense_store(
    store: str, *, shape: tuple[int, ...] = DEFAULT_SHAPE
) -> H5Group | ZarrGroup:
    X = np.random.randn(*shape)

    write_elem(store, "X", X)
    return store


def create_sparse_store(
    sparse_format: Literal["csc", "csr"], store: G, shape=DEFAULT_SHAPE
) -> G:
    """Returns a store

    Parameters
    ----------
    sparse_format
    store

    Returns
    -------
        A store with a key, `X` that is simply a sparse matrix, and `X_dask` where that same array is wrapped by dask
    """
    import dask.array as da

    X = sparse.random(
        shape[0],
        shape[1],
        format=sparse_format,
        density=0.01,
        random_state=np.random.default_rng(),
    )
    X_dask = da.from_array(
        X,
        chunks=(100 if format == "csr" else SIZE, SIZE * 2 if format == "csr" else 100),
    )

    write_elem(store, "X", X)
    write_elem(store, "X_dask", X_dask)
    return store


@pytest.mark.parametrize(
    ("value", "encoding_type"),
    [
        pytest.param(None, "null", id="none"),
        pytest.param("hello world", "string", id="py_str"),
        pytest.param(np.str_("hello world"), "string", id="np_str"),
        pytest.param(np.array([1, 2, 3]), "array", id="np_arr_int"),
        pytest.param(
            np.array(["hello", "world"], dtype=object), "string-array", id="np_arr_str"
        ),
        pytest.param(1, "numeric-scalar", id="py_int"),
        pytest.param(True, "numeric-scalar", id="py_bool"),
        pytest.param(1.0, "numeric-scalar", id="py_float"),
        pytest.param({"a": 1}, "dict", id="py_dict"),
        pytest.param(gen_adata((3, 2)), "anndata", id="anndata"),
        pytest.param(
            sparse.random(5, 3, format="csr", density=0.5),
            "csr_matrix",
            id="sp_mat_csr",
        ),
        pytest.param(
            sparse.random(5, 3, format="csc", density=0.5),
            "csc_matrix",
            id="sp_mat_csc",
        ),
        pytest.param(pd.DataFrame({"a": [1, 2, 3]}), "dataframe", id="pd_df"),
        pytest.param(
            pd.Categorical(list("aabccedd") + [pd.NA]),
            "categorical",
            id="pd_cat_np_str",
        ),
        pytest.param(
            pd.Categorical(list("aabccedd"), ordered=True),
            "categorical",
            id="pd_cat_np_str_ord",
        ),
        pytest.param(
            pd.array(list("aabccedd") + [pd.NA], dtype="string").astype("category"),
            "categorical",
            id="pd_cat_pd_str",
        ),
        pytest.param(
            pd.Categorical([1, 2, 1, 3], ordered=True), "categorical", id="pd_cat_num"
        ),
        pytest.param(
            pd.array(["hello", "world"], dtype="string"),
            "nullable-string-array",
            id="pd_arr_str",
        ),
        pytest.param(
            pd.array(["hello", "world", pd.NA], dtype="string"),
            "nullable-string-array",
            id="pd_arr_str_mask",
        ),
        pytest.param(
            pd.arrays.IntegerArray(
                np.ones(5, dtype=int), mask=np.array([True, False, True, False, True])
            ),
            "nullable-integer",
            id="pd_arr_int_mask",
        ),
        pytest.param(pd.array([1, 2, 3]), "nullable-integer", id="pd_arr_int"),
        pytest.param(
            pd.arrays.BooleanArray(
                np.random.randint(0, 2, size=5, dtype=bool),
                mask=np.random.randint(0, 2, size=5, dtype=bool),
            ),
            "nullable-boolean",
            id="pd_arr_bool_mask",
        ),
        pytest.param(
            pd.array([True, False, True, True]), "nullable-boolean", id="pd_arr_bool"
        ),
        pytest.param(
            zarr.ones((100, 100), chunks=(10, 10)),
            "array",
            id="zarr_dense_array",
        ),
        pytest.param(
            create_dense_store(
                h5py.File("test1.h5", mode="w", driver="core", backing_store=False)
            )["X"],
            "array",
            id="h5_dense_array",
        ),
        # pytest.param(bytes, b"some bytes", "bytes", id="py_bytes"), # Does not work for zarr
        # TODO consider how specific encodings should be. Should we be fully describing the written type?
        # Currently the info we add is: "what you wouldn't be able to figure out yourself"
        # but that's not really a solid rule.
        # pytest.param(bool, True, "bool", id="py_bool"),
        # pytest.param(bool, np.bool_(False), "bool", id="np_bool"),
    ],
)
def test_io_spec(store, value, encoding_type):
    # zarr v3 can't write recarray
    # https://github.com/zarr-developers/zarr-python/issues/2134
    if (
        ad.settings.zarr_write_format == 3
        and encoding_type == "anndata"
        and "O_recarray" in value.uns
    ):
        del value.uns["O_recarray"]
    with ad.settings.override(allow_write_nullable_strings=True):
        key = f"key_for_{encoding_type}"
        write_elem(store, key, value, dataset_kwargs={})

        assert encoding_type == _read_attr(store[key].attrs, "encoding-type")

        from_disk = read_elem(store[key])
        assert_equal(value, from_disk)
        assert get_spec(store[key]) == _REGISTRY.get_spec(value)


@pytest.mark.parametrize(
    ("value", "encoding_type"),
    [
        pytest.param(np.asarray(1), "numeric-scalar", id="scalar_int"),
        pytest.param(np.asarray(1.0), "numeric-scalar", id="scalar_float"),
        pytest.param(np.asarray(True), "numeric-scalar", id="scalar_bool"),  # noqa: FBT003
        pytest.param(np.asarray("test"), "string", id="scalar_string"),
    ],
)
def test_io_spec_compressed_scalars(store: G, value: np.ndarray, encoding_type: str):
    key = f"key_for_{encoding_type}"
    write_elem(
        store, key, value, dataset_kwargs={"compression": "gzip", "compression_opts": 5}
    )

    assert encoding_type == _read_attr(store[key].attrs, "encoding-type")

    from_disk = read_elem(store[key])
    assert_equal(value, from_disk)


# Can't instantiate cupy types at the top level, so converting them within the test
@pytest.mark.gpu
@pytest.mark.parametrize(
    ("value", "encoding_type"),
    [
        (np.array([1, 2, 3]), "array"),
        (np.arange(12).reshape(4, 3), "array"),
        (sparse.random(5, 3, format="csr", density=0.5), "csr_matrix"),
        (sparse.random(5, 3, format="csc", density=0.5), "csc_matrix"),
    ],
)
@pytest.mark.parametrize("as_dask", [False, True])
def test_io_spec_cupy(store, value, encoding_type, as_dask):
    if as_dask:
        if isinstance(value, CSMatrix):
            value = as_cupy_sparse_dask_array(value, format=encoding_type[:3])
        else:
            value = as_dense_cupy_dask_array(value)
    else:
        value = as_cupy(value)

    key = f"key_for_{encoding_type}"
    write_elem(store, key, value, dataset_kwargs={})

    assert encoding_type == _read_attr(store[key].attrs, "encoding-type")

    from_disk = as_cupy(read_elem(store[key]))
    assert_equal(value, from_disk)
    assert get_spec(store[key]) == _REGISTRY.get_spec(value)


def test_dask_write_sparse(sparse_format, store):
    x_sparse_store = create_sparse_store(sparse_format, store)
    X_from_disk = read_elem(x_sparse_store["X"])
    X_dask_from_disk = read_elem(x_sparse_store["X_dask"])

    assert_equal(X_from_disk, X_dask_from_disk)
    assert_equal(dict(x_sparse_store["X"].attrs), dict(x_sparse_store["X_dask"].attrs))

    assert x_sparse_store["X_dask/indptr"].dtype == np.int64
    assert x_sparse_store["X_dask/indices"].dtype == np.int64


def test_read_lazy_2d_dask(sparse_format, store):
    arr_store = create_sparse_store(sparse_format, store)
    X_dask_from_disk = read_elem_lazy(arr_store["X"])
    X_from_disk = read_elem(arr_store["X"])

    assert_equal(X_from_disk, X_dask_from_disk)
    random_int_indices = np.random.randint(0, SIZE, (SIZE // 10,))
    random_int_indices.sort()
    index_slice = slice(0, SIZE // 10)
    for index in [random_int_indices, index_slice]:
        assert_equal(X_from_disk[index, :], X_dask_from_disk[index, :])
        assert_equal(X_from_disk[:, index], X_dask_from_disk[:, index])
    random_bool_mask = np.random.randn(SIZE) > 0
    assert_equal(
        X_from_disk[random_bool_mask, :], X_dask_from_disk[random_bool_mask, :]
    )
    random_bool_mask = np.random.randn(SIZE * 2) > 0
    assert_equal(
        X_from_disk[:, random_bool_mask], X_dask_from_disk[:, random_bool_mask]
    )

    assert arr_store["X_dask/indptr"].dtype == np.int64
    assert arr_store["X_dask/indices"].dtype == np.int64


@pytest.mark.parametrize(
    ("n_dims", "chunks"),
    [
        (1, (100,)),
        (1, (400,)),
        (2, (100, 100)),
        (2, (400, 400)),
        (2, (200, 400)),
        (1, None),
        (2, None),
        (2, (400, -1)),
        (2, (400, None)),
    ],
)
def test_read_lazy_subsets_nd_dask(store, n_dims, chunks):
    arr_store = create_dense_store(store, shape=DEFAULT_SHAPE[:n_dims])
    X_dask_from_disk = read_elem_lazy(arr_store["X"], chunks=chunks)
    X_from_disk = read_elem(arr_store["X"])
    assert_equal(X_from_disk, X_dask_from_disk)

    random_int_indices = np.random.randint(0, SIZE, (SIZE // 10,))
    random_int_indices.sort()
    random_bool_mask = np.random.randn(SIZE) > 0
    index_slice = slice(0, SIZE // 10)
    for index in [random_int_indices, index_slice, random_bool_mask]:
        assert_equal(X_from_disk[index], X_dask_from_disk[index])


@pytest.mark.xdist_group("dask")
def test_read_lazy_h5_cluster(
    sparse_format: Literal["csr", "csc"], tmp_path: Path, local_cluster_addr: str
) -> None:
    import dask.distributed as dd

    with h5py.File(tmp_path / "test.h5", "w") as file:
        store = file["/"]
        arr_store = create_sparse_store(sparse_format, store)
        X_dask_from_disk = read_elem_lazy(arr_store["X"])
        X_from_disk = read_elem(arr_store["X"])
    with dd.Client(local_cluster_addr):
        assert_equal(X_from_disk, X_dask_from_disk)


def test_undersized_shape_to_default(store: H5Group | ZarrGroup):
    shape = (3000, 50)
    arr_store = create_dense_store(store, shape=shape)
    X_dask_from_disk = read_elem_lazy(arr_store["X"])
    assert (c < s for c, s in zip(X_dask_from_disk.chunksize, shape))
    assert X_dask_from_disk.shape == shape


@pytest.mark.parametrize(
    ("arr_type", "chunks", "expected_chunksize"),
    [
        ("dense", (100, 100), (100, 100)),
        ("csc", (SIZE, 10), (SIZE, 10)),
        ("csr", (10, SIZE * 2), (10, SIZE * 2)),
        ("csc", None, (SIZE, 1000)),
        ("csr", None, (1000, SIZE * 2)),
        ("csr", (10, -1), (10, SIZE * 2)),
        ("csc", (-1, 10), (SIZE, 10)),
        ("csr", (10, None), (10, SIZE * 2)),
        ("csc", (None, 10), (SIZE, 10)),
        ("csc", (None, None), DEFAULT_SHAPE),
        ("csr", (None, None), DEFAULT_SHAPE),
        ("csr", (-1, -1), DEFAULT_SHAPE),
        ("csc", (-1, -1), DEFAULT_SHAPE),
    ],
)
def test_read_lazy_2d_chunk_kwargs(
    store: H5Group | ZarrGroup,
    arr_type: Literal["csr", "csc", "dense"],
    chunks: None | tuple[int | None, int | None],
    expected_chunksize: tuple[int, int],
):
    if arr_type == "dense":
        arr_store = create_dense_store(store)
        X_dask_from_disk = read_elem_lazy(arr_store["X"], chunks=chunks)
    else:
        arr_store = create_sparse_store(arr_type, store)
        X_dask_from_disk = read_elem_lazy(arr_store["X"], chunks=chunks)
    assert X_dask_from_disk.chunksize == expected_chunksize
    X_from_disk = read_elem(arr_store["X"])
    assert_equal(X_from_disk, X_dask_from_disk)


def test_read_lazy_bad_chunk_kwargs(tmp_path):
    arr_type = "csr"
    with h5py.File(tmp_path / "test.h5", "w") as file:
        store = file["/"]
        arr_store = create_sparse_store(arr_type, store)
        with pytest.raises(
            ValueError, match=r"`chunks` must be a tuple of two integers"
        ):
            read_elem_lazy(arr_store["X"], chunks=(SIZE,))
        with pytest.raises(ValueError, match=r"Only the major axis can be chunked"):
            read_elem_lazy(arr_store["X"], chunks=(SIZE, 10))


@pytest.mark.parametrize("sparse_format", ["csr", "csc"])
def test_write_indptr_dtype_override(store, sparse_format):
    X = sparse.random(
        100,
        100,
        format=sparse_format,
        density=0.1,
        random_state=np.random.default_rng(),
    )

    write_elem(store, "X", X, dataset_kwargs=dict(indptr_dtype="int64"))

    assert store["X/indptr"].dtype == np.int64
    assert X.indptr.dtype == np.int32
    np.testing.assert_array_equal(store["X/indptr"][...], X.indptr)


def test_io_spec_raw(store):
    adata = gen_adata((3, 2))
    adata.raw = adata.copy()

    write_elem(store, "adata", adata)

    assert "raw" == _read_attr(store["adata/raw"].attrs, "encoding-type")

    from_disk = read_elem(store["adata"])
    assert_equal(from_disk.raw, adata.raw)


def test_write_anndata_to_root(store):
    adata = gen_adata((3, 2))

    write_elem(store, "/", adata)
    # TODO: see https://github.com/zarr-developers/zarr-python/issues/2716
    if not is_zarr_v2() and isinstance(store, ZarrGroup):
        store = zarr.open(store.store)
    from_disk = read_elem(store)

    assert "anndata" == _read_attr(store.attrs, "encoding-type")
    assert_equal(from_disk, adata)


@pytest.mark.parametrize(
    ("attribute", "value"),
    [
        ("encoding-type", "floob"),
        ("encoding-version", "10000.0"),
    ],
)
def test_read_iospec_not_found(store, attribute, value):
    adata = gen_adata((3, 2))

    write_elem(store, "/", adata)
    store["obs"].attrs.update({attribute: value})

    with pytest.raises(IORegistryError) as exc_info:
        read_elem(store)
    msg = str(exc_info.value)

    assert "No read method registered for IOSpec" in msg
    assert f"{attribute.replace('-', '_')}='{value}'" in msg


@pytest.mark.parametrize(
    "obj",
    [(b"x",)],
)
def test_write_io_error(store, obj):
    full_pattern = re.compile(
        rf"No method registered for writing {type(obj)} into .*Group"
    )

    with pytest.raises(IORegistryError, match=r"while writing key '/el'") as exc_info:
        write_elem(store, "/el", obj)

    msg = str(exc_info.value)
    assert re.search(full_pattern, msg)


def test_write_nullable_string_error(store):
    with pytest.raises(RuntimeError, match=r"allow_write_nullable_strings.*is False"):
        write_elem(store, "/el", pd.array([""], dtype="string"))


def test_categorical_order_type(store):
    # https://github.com/scverse/anndata/issues/853
    cat = pd.Categorical([0, 1], ordered=True)
    write_elem(store, "ordered", cat)
    write_elem(store, "unordered", cat.set_ordered(False))

    assert isinstance(read_elem(store["ordered"]).ordered, bool)
    assert read_elem(store["ordered"]).ordered is True
    assert isinstance(read_elem(store["unordered"]).ordered, bool)
    assert read_elem(store["unordered"]).ordered is False


def test_override_specification():
    """
    Test that trying to overwrite an existing encoding raises an error.
    """
    from copy import deepcopy

    registry = deepcopy(_REGISTRY)

    with pytest.raises(TypeError):

        @registry.register_write(
            ZarrGroup, ad.AnnData, IOSpec("some new type", "0.1.0")
        )
        def _(store, key, adata):
            pass


@pytest.mark.parametrize(
    "value",
    [
        pytest.param({"a": 1}, id="dict"),
        pytest.param(gen_adata((3, 2)), id="anndata"),
        pytest.param(sparse.random(5, 3, format="csr", density=0.5), id="csr_matrix"),
        pytest.param(sparse.random(5, 3, format="csc", density=0.5), id="csc_matrix"),
        pytest.param(pd.DataFrame({"a": [1, 2, 3]}), id="dataframe"),
        pytest.param(pd.Categorical(list("aabccedd")), id="categorical"),
        pytest.param(
            pd.Categorical(list("aabccedd"), ordered=True), id="categorical-ordered"
        ),
        pytest.param(
            pd.Categorical([1, 2, 1, 3], ordered=True), id="categorical-numeric"
        ),
        pytest.param(
            pd.arrays.IntegerArray(
                np.ones(5, dtype=int), mask=np.array([True, False, True, False, True])
            ),
            id="nullable-integer",
        ),
        pytest.param(pd.array([1, 2, 3]), id="nullable-integer-no-nulls"),
        pytest.param(
            pd.arrays.BooleanArray(
                np.random.randint(0, 2, size=5, dtype=bool),
                mask=np.random.randint(0, 2, size=5, dtype=bool),
            ),
            id="nullable-boolean",
        ),
        pytest.param(
            pd.array([True, False, True, True]), id="nullable-boolean-no-nulls"
        ),
    ],
)
def test_write_to_root(store, value):
    """
    Test that elements which are written as groups can we written to the root group.
    """
    # zarr v3 can't write recarray
    # https://github.com/zarr-developers/zarr-python/issues/2134
    if ad.settings.zarr_write_format == 3 and isinstance(value, ad.AnnData):
        del value.uns["O_recarray"]
    write_elem(store, "/", value)
    # See: https://github.com/zarr-developers/zarr-python/issues/2716
    if isinstance(store, ZarrGroup) and not is_zarr_v2():
        store = zarr.open(store.store)
    result = read_elem(store)

    assert_equal(result, value)


@pytest.mark.parametrize("consolidated", [True, False])
def test_read_zarr_from_group(tmp_path, consolidated):
    # https://github.com/scverse/anndata/issues/1056
    pth = tmp_path / "test.zarr"
    adata = gen_adata((3, 2))

    z = open_write_group(pth)
    write_elem(z, "table/table", adata)

    if consolidated:
        zarr.consolidate_metadata(z.store)

    if consolidated:
        read_func = zarr.open_consolidated
    else:
        read_func = zarr.open

    z = read_func(pth)
    expected = ad.read_zarr(z["table/table"])
    assert_equal(adata, expected)


def test_dataframe_column_uniqueness(store):
    repeated_cols = pd.DataFrame(np.ones((3, 2)), columns=["a", "a"])

    with pytest.raises(
        ValueError,
        match=r"Found repeated column names: \['a'\]\. Column names must be unique\.",
    ):
        write_elem(store, "repeated_cols", repeated_cols)

    index_shares_col_name = pd.DataFrame(
        {"col_name": [1, 2, 3]}, index=pd.Index([1, 3, 2], name="col_name")
    )

    with pytest.raises(
        ValueError,
        match=r"DataFrame\.index\.name \('col_name'\) is also used by a column whose values are different\.",
    ):
        write_elem(store, "index_shares_col_name", index_shares_col_name)

    index_shared_okay = pd.DataFrame(
        {"col_name": [1, 2, 3]}, index=pd.Index([1, 2, 3], name="col_name")
    )

    write_elem(store, "index_shared_okay", index_shared_okay)
    result = read_elem(store["index_shared_okay"])

    assert_equal(result, index_shared_okay)


@pytest.mark.parametrize("copy_on_write", [True, False])
def test_io_pd_cow(store, copy_on_write):
    if Version(pd.__version__) < Version("2"):
        pytest.xfail("copy_on_write option is not available in pandas < 2")
    # https://github.com/zarr-developers/numcodecs/issues/514
    with pd.option_context("mode.copy_on_write", copy_on_write):
        orig = gen_adata((3, 2))
        write_elem(store, "adata", orig)
        from_store = read_elem(store["adata"])
        assert_equal(orig, from_store)


def test_read_sparse_array(
    tmp_path: Path,
    sparse_format: Literal["csr", "csc"],
    diskfmt: Literal["h5ad", "zarr"],
):
    path = tmp_path / f"test.{diskfmt.replace('ad', '')}"
    a = sparse.random(100, 100, format=sparse_format)
    if diskfmt == "zarr":
        f = open_write_group(path, mode="a")
    else:
        f = h5py.File(path, "a")
    ad.io.write_elem(f, "mtx", a)
    ad.settings.use_sparse_array_on_read = True
    mtx = ad.io.read_elem(f["mtx"])
    assert issubclass(type(mtx), CSArray)