File: test_obspvarp.py

package info (click to toggle)
python-anndata 0.12.0~rc1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,704 kB
  • sloc: python: 19,721; makefile: 22; sh: 14
file content (141 lines) | stat: -rw-r--r-- 4,941 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# TODO: These tests should share code with test_layers, and test_obsmvarm
from __future__ import annotations

import warnings

import joblib
import numpy as np
import pandas as pd
import pytest
from scipy import sparse

from anndata import AnnData
from anndata.tests.helpers import gen_typed_df_t2_size
from anndata.utils import asarray

M, N = (200, 100)


@pytest.fixture
def adata():
    X = np.zeros((M, N))
    obs = pd.DataFrame(
        dict(batch=np.array(["a", "b"])[np.random.randint(0, 2, M)]),
        index=[f"cell{i:03d}" for i in range(M)],
    )
    var = pd.DataFrame(index=[f"gene{i:03d}" for i in range(N)])
    return AnnData(X, obs=obs, var=var)


def test_assigmnent_dict(adata: AnnData):
    d_obsp = dict(
        a=pd.DataFrame(np.ones((M, M)), columns=adata.obs_names, index=adata.obs_names),
        b=np.zeros((M, M)),
        c=sparse.random(M, M, format="csr"),
    )
    d_varp = dict(
        a=pd.DataFrame(np.ones((N, N)), columns=adata.var_names, index=adata.var_names),
        b=np.zeros((N, N)),
        c=sparse.random(N, N, format="csr"),
    )
    adata.obsp = d_obsp
    for k, v in d_obsp.items():
        assert np.all(asarray(adata.obsp[k]) == asarray(v))
    adata.varp = d_varp
    for k, v in d_varp.items():
        assert np.all(asarray(adata.varp[k]) == asarray(v))


def test_setting_ndarray(adata: AnnData):
    adata.obsp["a"] = np.ones((M, M))
    adata.varp["a"] = np.ones((N, N))
    assert np.all(adata.obsp["a"] == np.ones((M, M)))
    assert np.all(adata.varp["a"] == np.ones((N, N)))

    h = joblib.hash(adata)
    with pytest.raises(ValueError, match=r"incorrect shape"):
        adata.obsp["b"] = np.ones((int(M / 2), M))
    with pytest.raises(ValueError, match=r"incorrect shape"):
        adata.obsp["b"] = np.ones((M, int(M * 2)))
    with pytest.raises(ValueError, match=r"incorrect shape"):
        adata.varp["b"] = np.ones((int(N / 2), 10))
    with pytest.raises(ValueError, match=r"incorrect shape"):
        adata.varp["b"] = np.ones((N, int(N * 2)))
    assert h == joblib.hash(adata)


def test_setting_sparse(adata: AnnData):
    obsp_sparse = sparse.random(M, M, format="csr")
    adata.obsp["a"] = obsp_sparse
    assert not np.any((adata.obsp["a"] != obsp_sparse).data)

    varp_sparse = sparse.random(N, N, format="csr")
    adata.varp["a"] = varp_sparse
    assert not np.any((adata.varp["a"] != varp_sparse).data)

    h = joblib.hash(adata)

    bad_obsp_sparse = sparse.random(M * 2, M, format="csr")
    with pytest.raises(ValueError, match=r"incorrect shape"):
        adata.obsp["b"] = bad_obsp_sparse

    bad_varp_sparse = sparse.random(N * 2, N, format="csr")
    with pytest.raises(ValueError, match=r"incorrect shape"):
        adata.varp["b"] = bad_varp_sparse

    assert h == joblib.hash(adata)


@pytest.mark.parametrize(("field", "dim"), [("obsp", M), ("varp", N)])
@pytest.mark.parametrize(
    ("df", "homogenous", "dtype"),
    [
        (lambda dim: gen_typed_df_t2_size(dim, dim), True, np.object_),
        (lambda dim: pd.DataFrame(np.random.randn(dim, dim)), False, np.floating),
    ],
    ids=["heterogeneous", "homogeneous"],
)
def test_setting_dataframe(adata: AnnData, field, dim, homogenous, df, dtype):
    if homogenous:
        with pytest.warns(UserWarning, match=rf"{field.title()} 'df'.*dtype object"):
            getattr(adata, field)["df"] = df(dim)
    else:
        with warnings.catch_warnings():
            warnings.simplefilter("error")
            getattr(adata, field)["df"] = df(dim)
    assert isinstance(getattr(adata, field)["df"], np.ndarray)
    assert np.issubdtype(getattr(adata, field)["df"].dtype, dtype)


def test_setting_daskarray(adata: AnnData):
    import dask.array as da

    adata.obsp["a"] = da.ones((M, M))
    adata.varp["a"] = da.ones((N, N))
    assert da.all(adata.obsp["a"] == da.ones((M, M)))
    assert da.all(adata.varp["a"] == da.ones((N, N)))
    assert isinstance(adata.obsp["a"], da.Array)
    assert isinstance(adata.varp["a"], da.Array)

    h = joblib.hash(adata)
    with pytest.raises(ValueError, match=r"incorrect shape"):
        adata.obsp["b"] = da.ones((int(M / 2), M))
    with pytest.raises(ValueError, match=r"incorrect shape"):
        adata.obsp["b"] = da.ones((M, int(M * 2)))
    with pytest.raises(ValueError, match=r"incorrect shape"):
        adata.varp["b"] = da.ones((int(N / 2), 10))
    with pytest.raises(ValueError, match=r"incorrect shape"):
        adata.varp["b"] = da.ones((N, int(N * 2)))
    assert h == joblib.hash(adata)


def test_shape_error(adata: AnnData):
    with pytest.raises(
        ValueError,
        match=(
            r"Value passed for key 'a' is of incorrect shape\. "
            r"Values of obsp must match dimensions \('obs', 'obs'\) of parent\. "
            r"Value had shape \(201, 200\) while it should have had \(200, 200\)\."
        ),
    ):
        adata.obsp["a"] = np.zeros((adata.shape[0] + 1, adata.shape[0]))