1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
# TODO: These tests should share code with test_layers, and test_obsmvarm
from __future__ import annotations
import warnings
import joblib
import numpy as np
import pandas as pd
import pytest
from scipy import sparse
from anndata import AnnData
from anndata.tests.helpers import gen_typed_df_t2_size
from anndata.utils import asarray
M, N = (200, 100)
@pytest.fixture
def adata():
X = np.zeros((M, N))
obs = pd.DataFrame(
dict(batch=np.array(["a", "b"])[np.random.randint(0, 2, M)]),
index=[f"cell{i:03d}" for i in range(M)],
)
var = pd.DataFrame(index=[f"gene{i:03d}" for i in range(N)])
return AnnData(X, obs=obs, var=var)
def test_assigmnent_dict(adata: AnnData):
d_obsp = dict(
a=pd.DataFrame(np.ones((M, M)), columns=adata.obs_names, index=adata.obs_names),
b=np.zeros((M, M)),
c=sparse.random(M, M, format="csr"),
)
d_varp = dict(
a=pd.DataFrame(np.ones((N, N)), columns=adata.var_names, index=adata.var_names),
b=np.zeros((N, N)),
c=sparse.random(N, N, format="csr"),
)
adata.obsp = d_obsp
for k, v in d_obsp.items():
assert np.all(asarray(adata.obsp[k]) == asarray(v))
adata.varp = d_varp
for k, v in d_varp.items():
assert np.all(asarray(adata.varp[k]) == asarray(v))
def test_setting_ndarray(adata: AnnData):
adata.obsp["a"] = np.ones((M, M))
adata.varp["a"] = np.ones((N, N))
assert np.all(adata.obsp["a"] == np.ones((M, M)))
assert np.all(adata.varp["a"] == np.ones((N, N)))
h = joblib.hash(adata)
with pytest.raises(ValueError, match=r"incorrect shape"):
adata.obsp["b"] = np.ones((int(M / 2), M))
with pytest.raises(ValueError, match=r"incorrect shape"):
adata.obsp["b"] = np.ones((M, int(M * 2)))
with pytest.raises(ValueError, match=r"incorrect shape"):
adata.varp["b"] = np.ones((int(N / 2), 10))
with pytest.raises(ValueError, match=r"incorrect shape"):
adata.varp["b"] = np.ones((N, int(N * 2)))
assert h == joblib.hash(adata)
def test_setting_sparse(adata: AnnData):
obsp_sparse = sparse.random(M, M, format="csr")
adata.obsp["a"] = obsp_sparse
assert not np.any((adata.obsp["a"] != obsp_sparse).data)
varp_sparse = sparse.random(N, N, format="csr")
adata.varp["a"] = varp_sparse
assert not np.any((adata.varp["a"] != varp_sparse).data)
h = joblib.hash(adata)
bad_obsp_sparse = sparse.random(M * 2, M, format="csr")
with pytest.raises(ValueError, match=r"incorrect shape"):
adata.obsp["b"] = bad_obsp_sparse
bad_varp_sparse = sparse.random(N * 2, N, format="csr")
with pytest.raises(ValueError, match=r"incorrect shape"):
adata.varp["b"] = bad_varp_sparse
assert h == joblib.hash(adata)
@pytest.mark.parametrize(("field", "dim"), [("obsp", M), ("varp", N)])
@pytest.mark.parametrize(
("df", "homogenous", "dtype"),
[
(lambda dim: gen_typed_df_t2_size(dim, dim), True, np.object_),
(lambda dim: pd.DataFrame(np.random.randn(dim, dim)), False, np.floating),
],
ids=["heterogeneous", "homogeneous"],
)
def test_setting_dataframe(adata: AnnData, field, dim, homogenous, df, dtype):
if homogenous:
with pytest.warns(UserWarning, match=rf"{field.title()} 'df'.*dtype object"):
getattr(adata, field)["df"] = df(dim)
else:
with warnings.catch_warnings():
warnings.simplefilter("error")
getattr(adata, field)["df"] = df(dim)
assert isinstance(getattr(adata, field)["df"], np.ndarray)
assert np.issubdtype(getattr(adata, field)["df"].dtype, dtype)
def test_setting_daskarray(adata: AnnData):
import dask.array as da
adata.obsp["a"] = da.ones((M, M))
adata.varp["a"] = da.ones((N, N))
assert da.all(adata.obsp["a"] == da.ones((M, M)))
assert da.all(adata.varp["a"] == da.ones((N, N)))
assert isinstance(adata.obsp["a"], da.Array)
assert isinstance(adata.varp["a"], da.Array)
h = joblib.hash(adata)
with pytest.raises(ValueError, match=r"incorrect shape"):
adata.obsp["b"] = da.ones((int(M / 2), M))
with pytest.raises(ValueError, match=r"incorrect shape"):
adata.obsp["b"] = da.ones((M, int(M * 2)))
with pytest.raises(ValueError, match=r"incorrect shape"):
adata.varp["b"] = da.ones((int(N / 2), 10))
with pytest.raises(ValueError, match=r"incorrect shape"):
adata.varp["b"] = da.ones((N, int(N * 2)))
assert h == joblib.hash(adata)
def test_shape_error(adata: AnnData):
with pytest.raises(
ValueError,
match=(
r"Value passed for key 'a' is of incorrect shape\. "
r"Values of obsp must match dimensions \('obs', 'obs'\) of parent\. "
r"Value had shape \(201, 200\) while it should have had \(200, 200\)\."
),
):
adata.obsp["a"] = np.zeros((adata.shape[0] + 1, adata.shape[0]))
|