File: test_readwrite.py

package info (click to toggle)
python-anndata 0.12.0~rc1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,704 kB
  • sloc: python: 19,721; makefile: 22; sh: 14
file content (955 lines) | stat: -rw-r--r-- 33,324 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
from __future__ import annotations

import re
import warnings
from contextlib import contextmanager
from functools import partial
from importlib.util import find_spec
from pathlib import Path
from string import ascii_letters
from typing import TYPE_CHECKING

import h5py
import numpy as np
import pandas as pd
import pytest
import zarr
from numba.core.errors import NumbaDeprecationWarning
from scipy.sparse import csc_array, csc_matrix, csr_array, csr_matrix

import anndata as ad
from anndata._io.specs.registry import IORegistryError
from anndata._io.zarr import open_write_group
from anndata.compat import (
    CSArray,
    CSMatrix,
    DaskArray,
    ZarrArray,
    ZarrGroup,
    _read_attr,
    is_zarr_v2,
)
from anndata.tests.helpers import as_dense_dask_array, assert_equal, gen_adata

if TYPE_CHECKING:
    from typing import Literal

HERE = Path(__file__).parent


# ------------------------------------------------------------------------------
# Some test data
# ------------------------------------------------------------------------------


X_sp = csr_matrix([[1, 0, 0], [3, 0, 0], [5, 6, 0], [0, 0, 0], [0, 0, 0]])

X_list = [[1, 0], [3, 0], [5, 6]]  # data matrix of shape n_obs x n_vars

obs_dict = dict(  # annotation of observations / rows
    row_names=["name1", "name2", "name3"],  # row annotation
    oanno1=["cat1", "cat2", "cat2"],  # categorical annotation
    oanno1b=["cat1", "cat1", "cat1"],  # categorical annotation with one category
    oanno1c=["cat1", "cat1", np.nan],  # categorical annotation with a missing value
    oanno2=["o1", "o2", "o3"],  # string annotation
    oanno3=[2.1, 2.2, 2.3],  # float annotation
    oanno4=[3.3, 1.1, 2.2],  # float annotation
)

var_dict = dict(  # annotation of variables / columns
    vanno1=[3.1, 3.2],
    vanno2=["cat1", "cat1"],  # categorical annotation
    vanno3=[2.1, 2.2],  # float annotation
    vanno4=[3.3, 1.1],  # float annotation
)

uns_dict = dict(  # unstructured annotation
    oanno1_colors=["#000000", "#FFFFFF"],
    uns2=["some annotation"],
    uns3="another annotation",
    uns4=dict(
        a=1,
        b=[2, 3],
        c="4",
        d=["some", "strings"],
        e=np.ones(5),
        f=np.int32(7),
        g=[1, np.float32(2.5)],
    ),
)


@pytest.fixture(params=[{}, dict(compression="gzip")])
def dataset_kwargs(request):
    return request.param


@pytest.fixture
def rw(backing_h5ad):
    M, N = 100, 101
    orig = gen_adata((M, N))
    orig.write(backing_h5ad)
    curr = ad.read_h5ad(backing_h5ad)
    return curr, orig


@pytest.fixture(params=[np.uint8, np.int32, np.int64, np.float32, np.float64])
def dtype(request):
    return request.param


# ------------------------------------------------------------------------------
# The test functions
# ------------------------------------------------------------------------------


@pytest.mark.parametrize("typ", [np.array, csr_matrix, csr_array, as_dense_dask_array])
def test_readwrite_roundtrip(typ, tmp_path, diskfmt, diskfmt2):
    pth1 = tmp_path / f"first.{diskfmt}"
    write1 = lambda x: getattr(x, f"write_{diskfmt}")(pth1)
    read1 = lambda: getattr(ad, f"read_{diskfmt}")(pth1)
    pth2 = tmp_path / f"second.{diskfmt2}"
    write2 = lambda x: getattr(x, f"write_{diskfmt2}")(pth2)
    read2 = lambda: getattr(ad, f"read_{diskfmt2}")(pth2)

    adata1 = ad.AnnData(typ(X_list), obs=obs_dict, var=var_dict, uns=uns_dict)
    write1(adata1)
    adata2 = read1()
    write2(adata2)
    adata3 = read2()

    assert_equal(adata2, adata1)
    assert_equal(adata3, adata1)
    assert_equal(adata2, adata1)


def test_readwrite_roundtrip_async(tmp_path):
    import asyncio

    async def _do_test():
        zarr_path = tmp_path / "first.zarr"

        adata1 = ad.AnnData(
            csr_matrix(X_list), obs=obs_dict, var=var_dict, uns=uns_dict
        )
        adata1.write_zarr(zarr_path)
        adata2 = ad.read_zarr(zarr_path)

        assert_equal(adata2, adata1)

    # This test ensures our file i/o never calls `asyncio.run` internally
    asyncio.run(_do_test())


@pytest.mark.parametrize("storage", ["h5ad", "zarr"])
@pytest.mark.parametrize("typ", [np.array, csr_matrix, csr_array, as_dense_dask_array])
def test_readwrite_kitchensink(tmp_path, storage, typ, backing_h5ad, dataset_kwargs):
    X = typ(X_list)
    adata_src = ad.AnnData(X, obs=obs_dict, var=var_dict, uns=uns_dict)
    assert not isinstance(adata_src.obs["oanno1"].dtype, pd.CategoricalDtype)
    adata_src.raw = adata_src.copy()

    if storage == "h5ad":
        adata_src.write(backing_h5ad, **dataset_kwargs)
        adata_mid = ad.read_h5ad(backing_h5ad)
        adata_mid.write(tmp_path / "mid.h5ad", **dataset_kwargs)
        adata = ad.read_h5ad(tmp_path / "mid.h5ad")
    else:
        adata_src.write_zarr(tmp_path / "test_zarr_dir")
        adata = ad.read_zarr(tmp_path / "test_zarr_dir")
    assert isinstance(adata.obs["oanno1"].dtype, pd.CategoricalDtype)
    assert not isinstance(adata.obs["oanno2"].dtype, pd.CategoricalDtype)
    assert adata.obs.index.tolist() == ["name1", "name2", "name3"]
    assert adata.obs["oanno1"].cat.categories.tolist() == ["cat1", "cat2"]
    assert adata.obs["oanno1c"].cat.categories.tolist() == ["cat1"]
    assert isinstance(adata.raw.var["vanno2"].dtype, pd.CategoricalDtype)
    pd.testing.assert_frame_equal(adata.obs, adata_src.obs)
    pd.testing.assert_frame_equal(adata.var, adata_src.var)
    assert_equal(adata.var.index, adata_src.var.index)
    assert adata.var.index.dtype == adata_src.var.index.dtype

    # Dev. Note:
    # either load as same type or load the convert DaskArray to array
    # since we tested if assigned types and loaded types are DaskArray
    # this would also work if they work
    if isinstance(adata_src.raw.X, CSArray):
        assert isinstance(adata.raw.X, CSMatrix)
    else:
        assert isinstance(adata_src.raw.X, type(adata.raw.X) | DaskArray)
    assert isinstance(
        adata_src.uns["uns4"]["c"], type(adata.uns["uns4"]["c"]) | DaskArray
    )
    assert isinstance(adata_src.varm, type(adata.varm) | DaskArray)

    assert_equal(adata.raw.X, adata_src.raw.X)
    pd.testing.assert_frame_equal(adata.raw.var, adata_src.raw.var)
    assert isinstance(adata.uns["uns4"]["a"], int | np.integer)
    assert isinstance(adata_src.uns["uns4"]["a"], int | np.integer)
    assert_equal(adata, adata_src)


@pytest.mark.parametrize("typ", [np.array, csr_matrix, csr_array, as_dense_dask_array])
def test_readwrite_maintain_X_dtype(typ, backing_h5ad):
    X = typ(X_list).astype("int8")
    adata_src = ad.AnnData(X)
    adata_src.write(backing_h5ad)

    adata = ad.read_h5ad(backing_h5ad)
    assert adata.X.dtype == adata_src.X.dtype


def test_read_write_maintain_obsmvarm_dtypes(rw):
    curr, orig = rw

    assert type(orig.obsm["array"]) is type(curr.obsm["array"])
    assert np.all(orig.obsm["array"] == curr.obsm["array"])
    assert np.all(orig.varm["array"] == curr.varm["array"])
    assert type(orig.obsm["sparse"]) is type(curr.obsm["sparse"])
    assert not np.any((orig.obsm["sparse"] != curr.obsm["sparse"]).toarray())
    assert not np.any((orig.varm["sparse"] != curr.varm["sparse"]).toarray())
    assert type(orig.obsm["df"]) is type(curr.obsm["df"])
    assert np.all(orig.obsm["df"] == curr.obsm["df"])
    assert np.all(orig.varm["df"] == curr.varm["df"])


def test_maintain_layers(rw):
    curr, orig = rw

    assert type(orig.layers["array"]) is type(curr.layers["array"])
    assert np.all(orig.layers["array"] == curr.layers["array"])
    assert type(orig.layers["sparse"]) is type(curr.layers["sparse"])
    assert not np.any((orig.layers["sparse"] != curr.layers["sparse"]).toarray())


@pytest.mark.parametrize("typ", [np.array, csr_matrix, csr_array, as_dense_dask_array])
def test_readwrite_h5ad_one_dimension(typ, backing_h5ad):
    X = typ(X_list)
    adata_src = ad.AnnData(X, obs=obs_dict, var=var_dict, uns=uns_dict)
    adata_one = adata_src[:, 0].copy()
    adata_one.write(backing_h5ad)
    adata = ad.read_h5ad(backing_h5ad)
    assert adata.shape == (3, 1)
    assert_equal(adata, adata_one)


@pytest.mark.parametrize("typ", [np.array, csr_matrix, csr_array, as_dense_dask_array])
def test_readwrite_backed(typ, backing_h5ad):
    X = typ(X_list)
    adata_src = ad.AnnData(X, obs=obs_dict, var=var_dict, uns=uns_dict)
    adata_src.filename = backing_h5ad  # change to backed mode
    adata_src.write()

    adata = ad.read_h5ad(backing_h5ad)
    assert isinstance(adata.obs["oanno1"].dtype, pd.CategoricalDtype)
    assert not isinstance(adata.obs["oanno2"].dtype, pd.CategoricalDtype)
    assert adata.obs.index.tolist() == ["name1", "name2", "name3"]
    assert adata.obs["oanno1"].cat.categories.tolist() == ["cat1", "cat2"]
    assert_equal(adata, adata_src)


@pytest.mark.parametrize(
    "typ", [np.array, csr_matrix, csc_matrix, csr_array, csc_array]
)
def test_readwrite_equivalent_h5ad_zarr(tmp_path, typ):
    h5ad_pth = tmp_path / "adata.h5ad"
    zarr_pth = tmp_path / "adata.zarr"

    M, N = 100, 101
    adata = gen_adata((M, N), X_type=typ)
    adata.raw = adata.copy()

    adata.write_h5ad(h5ad_pth)
    adata.write_zarr(zarr_pth)
    from_h5ad = ad.read_h5ad(h5ad_pth)
    from_zarr = ad.read_zarr(zarr_pth)

    assert_equal(from_h5ad, from_zarr, exact=True)


@contextmanager
def store_context(path: Path):
    if path.suffix == ".zarr":
        store = open_write_group(path, mode="r+")
    else:
        file = h5py.File(path, "r+")
        store = file["/"]
    yield store
    if "file" in locals():
        file.close()


@pytest.mark.parametrize(
    ("name", "read", "write"),
    [
        ("adata.h5ad", ad.read_h5ad, ad.AnnData.write_h5ad),
        ("adata.zarr", ad.read_zarr, ad.AnnData.write_zarr),
    ],
)
def test_read_full_io_error(tmp_path, name, read, write):
    adata = gen_adata((4, 3))
    path = tmp_path / name
    write(adata, path)
    with store_context(path) as store:
        if not is_zarr_v2() and isinstance(store, ZarrGroup):
            # see https://github.com/zarr-developers/zarr-python/issues/2716 for the issue
            # with re-opening without syncing attributes explicitly
            # TODO: Having to fully specify attributes to not override fixed in zarr v3.0.5
            # See https://github.com/zarr-developers/zarr-python/pull/2870
            store["obs"].update_attributes(
                {**dict(store["obs"].attrs), "encoding-type": "invalid"}
            )
            zarr.consolidate_metadata(store.store)
        else:
            store["obs"].attrs["encoding-type"] = "invalid"

    with pytest.raises(
        IORegistryError,
        match=r"raised while reading key 'obs'.*from /$",
    ) as exc_info:
        read(path)
    assert re.search(
        r"No read method registered for IOSpec\(encoding_type='invalid', encoding_version='0.2.0'\)",
        str(exc_info.value),
    )


@pytest.mark.parametrize(
    ("compression", "compression_opts"),
    [
        (None, None),
        ("lzf", None),
        ("gzip", None),
        ("gzip", 8),
    ],
)
def test_hdf5_compression_opts(tmp_path, compression, compression_opts):
    # https://github.com/scverse/anndata/issues/497
    pth = Path(tmp_path) / "adata.h5ad"
    adata = gen_adata((10, 8))
    kwargs = {}
    if compression is not None:
        kwargs["compression"] = compression
    if compression_opts is not None:
        kwargs["compression_opts"] = compression_opts
    not_compressed = []

    adata.write_h5ad(pth, **kwargs)

    def check_compressed(key, value):
        if isinstance(value, h5py.Dataset) and value.shape != ():
            if compression is not None and value.compression != compression:
                not_compressed.append(key)
            elif (
                compression_opts is not None
                and value.compression_opts != compression_opts
            ):
                not_compressed.append(key)

    with h5py.File(pth) as f:
        f.visititems(check_compressed)

    if not_compressed:
        sep = "\n\t"
        msg = (
            f"These elements were not compressed correctly:{sep}"
            f"{sep.join(not_compressed)}"
        )
        raise AssertionError(msg)

    expected = ad.read_h5ad(pth)
    assert_equal(adata, expected)


@pytest.mark.parametrize("zarr_write_format", [2, 3])
def test_zarr_compression(tmp_path, zarr_write_format):
    ad.settings.zarr_write_format = zarr_write_format
    pth = str(Path(tmp_path) / "adata.zarr")
    adata = gen_adata((10, 8))
    if zarr_write_format == 2 or is_zarr_v2():
        from numcodecs import Blosc

        compressor = Blosc(cname="zstd", clevel=3, shuffle=Blosc.BITSHUFFLE)
    else:
        from zarr.codecs import BloscCodec

        # Typesize is forced to be 1 so that the codecs always match on the roundtrip.
        # Otherwise this value would vary depending on the datatype.
        # See github.com/zarr-developers/numcodecs/pull/713 for a related issue/explanation.
        # In practice, you would never want to set this parameter.
        compressor = BloscCodec(
            cname="zstd", clevel=3, shuffle="bitshuffle", typesize=1
        )
    not_compressed = []

    ad.io.write_zarr(pth, adata, compressor=compressor)

    def check_compressed(value, key):
        if not isinstance(value, ZarrArray) or value.shape == ():
            return None
        (read_compressor,) = value.compressors
        if zarr_write_format == 2:
            if read_compressor != compressor:
                not_compressed.append(key)
            return None
        if read_compressor.to_dict() != compressor.to_dict():
            not_compressed.append(key)

    if is_zarr_v2():
        with zarr.open(str(pth), "r") as f:
            f.visititems(check_compressed)
    else:
        f = zarr.open(str(pth), mode="r")
        for key, value in f.members(max_depth=None):
            check_compressed(value, key)

    if not_compressed:
        sep = "\n\t"
        msg = (
            f"These elements were not compressed correctly:{sep}"
            f"{sep.join(not_compressed)}"
        )
        raise AssertionError(msg)

    expected = ad.read_zarr(pth)
    assert_equal(adata, expected)


def test_changed_obs_var_names(tmp_path, diskfmt):
    filepth = tmp_path / f"test.{diskfmt}"

    orig = gen_adata((10, 10))
    orig.obs_names.name = "obs"
    orig.var_names.name = "var"
    modified = orig.copy()
    modified.obs_names.name = "cells"
    modified.var_names.name = "genes"

    getattr(orig, f"write_{diskfmt}")(filepth)
    read = getattr(ad, f"read_{diskfmt}")(filepth)

    assert_equal(orig, read, exact=True)
    assert orig.var.index.name == "var"
    assert read.obs.index.name == "obs"
    with pytest.raises(AssertionError):
        assert_equal(orig, modified, exact=True)
    with pytest.raises(AssertionError):
        assert_equal(read, modified, exact=True)


@pytest.mark.skipif(not find_spec("loompy"), reason="Loompy is not installed")
@pytest.mark.parametrize("typ", [np.array, csr_matrix])
@pytest.mark.parametrize("obsm_mapping", [{}, dict(X_composed=["oanno3", "oanno4"])])
@pytest.mark.parametrize("varm_mapping", [{}, dict(X_composed2=["vanno3", "vanno4"])])
def test_readwrite_loom(typ, obsm_mapping, varm_mapping, tmp_path):
    X = typ(X_list)
    obs_dim = "meaningful_obs_dim_name"
    var_dim = "meaningful_var_dim_name"
    adata_src = ad.AnnData(X, obs=obs_dict, var=var_dict, uns=uns_dict)
    adata_src.obs_names.name = obs_dim
    adata_src.var_names.name = var_dim
    adata_src.obsm["X_a"] = np.zeros((adata_src.n_obs, 2))
    adata_src.varm["X_b"] = np.zeros((adata_src.n_vars, 3))

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=NumbaDeprecationWarning)
        # loompy uses “is” for ints
        warnings.filterwarnings("ignore", category=SyntaxWarning)
        warnings.filterwarnings(
            "ignore",
            message=r"datetime.datetime.utcnow\(\) is deprecated",
            category=DeprecationWarning,
        )
        adata_src.write_loom(tmp_path / "test.loom", write_obsm_varm=True)

    adata = ad.io.read_loom(
        tmp_path / "test.loom",
        sparse=typ is csr_matrix,
        obsm_mapping=obsm_mapping,
        obs_names=obs_dim,
        varm_mapping=varm_mapping,
        var_names=var_dim,
        cleanup=True,
    )

    if isinstance(X, np.ndarray):
        assert np.allclose(adata.X, X)
    else:
        # TODO: this should not be necessary
        assert np.allclose(adata.X.toarray(), X.toarray())
    assert "X_a" in adata.obsm_keys()
    assert adata.obsm["X_a"].shape[1] == 2
    assert "X_b" in adata.varm_keys()
    assert adata.varm["X_b"].shape[1] == 3
    # as we called with `cleanup=True`
    assert "oanno1b" in adata.uns["loom-obs"]
    assert "vanno2" in adata.uns["loom-var"]
    for k, v in obsm_mapping.items():
        assert k in adata.obsm_keys()
        assert adata.obsm[k].shape[1] == len(v)
    for k, v in varm_mapping.items():
        assert k in adata.varm_keys()
        assert adata.varm[k].shape[1] == len(v)
    assert adata.obs_names.name == obs_dim
    assert adata.var_names.name == var_dim


@pytest.mark.skipif(not find_spec("loompy"), reason="Loompy is not installed")
def test_readloom_deprecations(tmp_path):
    loom_pth = tmp_path / "test.loom"
    adata_src = gen_adata((5, 10), obsm_types=[np.ndarray], varm_types=[np.ndarray])

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=NumbaDeprecationWarning)
        warnings.filterwarnings(
            "ignore",
            message=r"datetime.datetime.utcnow\(\) is deprecated",
            category=DeprecationWarning,
        )
        adata_src.write_loom(loom_pth, write_obsm_varm=True)

    # obsm_names -> obsm_mapping
    obsm_mapping = {"df": adata_src.obs.columns}
    with pytest.warns(FutureWarning):
        depr_result = ad.io.read_loom(loom_pth, obsm_names=obsm_mapping)
    actual_result = ad.io.read_loom(loom_pth, obsm_mapping=obsm_mapping)
    assert_equal(actual_result, depr_result)
    with pytest.raises(ValueError, match=r"ambiguous"), pytest.warns(FutureWarning):
        ad.io.read_loom(loom_pth, obsm_mapping=obsm_mapping, obsm_names=obsm_mapping)

    # varm_names -> varm_mapping
    varm_mapping = {"df": adata_src.var.columns}
    with pytest.warns(FutureWarning):
        depr_result = ad.io.read_loom(loom_pth, varm_names=varm_mapping)
    actual_result = ad.io.read_loom(loom_pth, varm_mapping=varm_mapping)
    assert_equal(actual_result, depr_result)
    with pytest.raises(ValueError, match=r"ambiguous"), pytest.warns(FutureWarning):
        ad.io.read_loom(loom_pth, varm_mapping=varm_mapping, varm_names=varm_mapping)

    # positional -> keyword
    with pytest.warns(FutureWarning, match=r"sparse"):
        depr_result = ad.io.read_loom(loom_pth, True)  # noqa: FBT003
    actual_result = ad.io.read_loom(loom_pth, sparse=True)
    assert type(depr_result.X) == type(actual_result.X)


def test_read_csv():
    adata = ad.io.read_csv(HERE / "data" / "adata.csv")
    assert adata.obs_names.tolist() == ["r1", "r2", "r3"]
    assert adata.var_names.tolist() == ["c1", "c2"]
    assert adata.X.tolist() == X_list


def test_read_tsv_strpath():
    adata = ad.io.read_text(str(HERE / "data" / "adata-comments.tsv"), "\t")
    assert adata.obs_names.tolist() == ["r1", "r2", "r3"]
    assert adata.var_names.tolist() == ["c1", "c2"]
    assert adata.X.tolist() == X_list


def test_read_tsv_iter():
    with (HERE / "data" / "adata-comments.tsv").open() as f:
        adata = ad.io.read_text(f, "\t")
    assert adata.obs_names.tolist() == ["r1", "r2", "r3"]
    assert adata.var_names.tolist() == ["c1", "c2"]
    assert adata.X.tolist() == X_list


@pytest.mark.parametrize("typ", [np.array, csr_matrix])
def test_write_csv(typ, tmp_path):
    X = typ(X_list)
    adata = ad.AnnData(X, obs=obs_dict, var=var_dict, uns=uns_dict)
    adata.write_csvs(tmp_path / "test_csv_dir", skip_data=False)


@pytest.mark.parametrize("typ", [np.array, csr_matrix])
def test_write_csv_view(typ, tmp_path):
    # https://github.com/scverse/anndata/issues/401
    import hashlib

    def md5_path(pth: Path) -> bytes:
        checksum = hashlib.md5()
        with pth.open("rb") as f:
            while True:
                buf = f.read(checksum.block_size * 100)
                if not buf:
                    break
                checksum.update(buf)
        return checksum.digest()

    def hash_dir_contents(dir: Path) -> dict[str, bytes]:
        root_pth = str(dir)
        return {
            str(k)[len(root_pth) :]: md5_path(k) for k in dir.rglob("*") if k.is_file()
        }

    adata = ad.AnnData(typ(X_list), obs=obs_dict, var=var_dict, uns=uns_dict)

    # Test writing a view
    view_pth = tmp_path / "test_view_csv_dir"
    copy_pth = tmp_path / "test_copy_csv_dir"
    adata[::2].write_csvs(view_pth, skip_data=False)
    adata[::2].copy().write_csvs(copy_pth, skip_data=False)

    assert hash_dir_contents(view_pth) == hash_dir_contents(copy_pth)


@pytest.mark.parametrize(
    ("read", "write", "name"),
    [
        pytest.param(ad.read_h5ad, ad.io.write_h5ad, "test_empty.h5ad"),
        pytest.param(
            ad.io.read_loom,
            ad.io.write_loom,
            "test_empty.loom",
            marks=pytest.mark.xfail(reason="Loom can’t handle 0×0 matrices"),
        ),
        pytest.param(ad.read_zarr, ad.io.write_zarr, "test_empty.zarr"),
    ],
)
def test_readwrite_empty(read, write, name, tmp_path):
    adata = ad.AnnData(uns=dict(empty=np.array([], dtype=float)))
    write(tmp_path / name, adata)
    ad_read = read(tmp_path / name)
    assert ad_read.uns["empty"].shape == (0,)


def test_read_excel():
    with warnings.catch_warnings():
        warnings.filterwarnings(
            "ignore",
            message=r"datetime.datetime.utcnow\(\) is deprecated",
            category=DeprecationWarning,
        )
        adata = ad.io.read_excel(HERE / "data/excel.xlsx", "Sheet1", dtype=int)
    assert adata.X.tolist() == X_list


def test_read_umi_tools():
    adata = ad.io.read_umi_tools(HERE / "data/umi_tools.tsv.gz")
    assert adata.obs_names.name == "cell"
    assert adata.var_names.name == "gene"
    assert adata.shape == (2, 13)
    assert "ENSG00000070404.9" in adata.var_names
    assert set(adata.obs_names) == {"ACAAGG", "TTCACG"}


@pytest.mark.parametrize("s2c", [True, False], ids=["str2cat", "preserve"])
def test_write_categorical(
    *, tmp_path: Path, diskfmt: Literal["h5ad", "zarr"], s2c: bool
) -> None:
    with ad.settings.override(allow_write_nullable_strings=True):
        adata_pth = tmp_path / f"adata.{diskfmt}"
        obs = dict(
            str=pd.array(["a", "a", "b", pd.NA, pd.NA], dtype="string"),
            cat=pd.Categorical(["a", "a", "b", np.nan, np.nan]),
            **(dict(obj=["a", "a", "b", np.nan, np.nan]) if s2c else {}),
        )
        orig = ad.AnnData(obs=pd.DataFrame(obs))
        getattr(orig, f"write_{diskfmt}")(
            adata_pth, convert_strings_to_categoricals=s2c
        )
        curr: ad.AnnData = getattr(ad, f"read_{diskfmt}")(adata_pth)
        assert np.all(orig.obs.notna() == curr.obs.notna())
        assert np.all(orig.obs.stack().dropna() == curr.obs.stack().dropna())
        assert curr.obs["str"].dtype == ("category" if s2c else "string")
        assert curr.obs["cat"].dtype == "category"


def test_write_categorical_index(tmp_path, diskfmt):
    adata_pth = tmp_path / f"adata.{diskfmt}"
    orig = ad.AnnData(
        uns={"df": pd.DataFrame({}, index=pd.Categorical(list("aabcd")))},
    )
    getattr(orig, f"write_{diskfmt}")(adata_pth)
    curr = getattr(ad, f"read_{diskfmt}")(adata_pth)
    # Also covered by next assertion, but checking this value specifically
    pd.testing.assert_index_equal(
        orig.uns["df"].index, curr.uns["df"].index, exact=True
    )
    assert_equal(orig, curr, exact=True)


@pytest.mark.parametrize("colname", ["_index"])
@pytest.mark.parametrize("attr", ["obs", "varm_df"])
def test_dataframe_reserved_columns(tmp_path, diskfmt, colname, attr):
    adata_pth = tmp_path / f"adata.{diskfmt}"
    orig = ad.AnnData(
        obs=pd.DataFrame(index=np.arange(5)), var=pd.DataFrame(index=np.arange(5))
    )

    to_write = orig.copy()
    if attr == "obs":
        to_write.obs[colname] = np.ones(5)
    elif attr == "varm_df":
        to_write.varm["df"] = pd.DataFrame(
            {colname: list("aabcd")}, index=to_write.var_names
        )
    else:
        pytest.fail(f"Unexpected attr: {attr}")
    with pytest.raises(ValueError, match=rf"{colname}.*reserved name"):
        getattr(to_write, f"write_{diskfmt}")(adata_pth)


def test_write_large_categorical(tmp_path, diskfmt):
    M = 30_000
    N = 1000
    ls = np.array(list(ascii_letters))

    def random_cats(n):
        cats = {
            "".join(np.random.choice(ls, np.random.choice(range(5, 30))))
            for _ in range(n)
        }
        while len(cats) < n:  # For the rare case that there’s duplicates
            cats |= random_cats(n - len(cats))
        return cats

    cats = np.array(sorted(random_cats(10_000)))
    adata_pth = tmp_path / f"adata.{diskfmt}"
    n_cats = len(np.unique(cats))
    orig = ad.AnnData(
        csr_matrix(([1], ([0], [0])), shape=(M, N)),
        obs=dict(
            cat1=cats[np.random.choice(n_cats, M)],
            cat2=pd.Categorical.from_codes(np.random.choice(n_cats, M), cats),
        ),
    )
    getattr(orig, f"write_{diskfmt}")(adata_pth)
    curr = getattr(ad, f"read_{diskfmt}")(adata_pth)
    assert_equal(orig, curr)


def test_write_string_type_error(tmp_path, diskfmt):
    adata = ad.AnnData(obs=dict(obs_names=list("abc")))
    adata.obs[b"c"] = np.zeros(3)

    # This should error, and tell you which key is at fault
    with pytest.raises(TypeError, match=r"writing key 'obs'") as exc_info:
        getattr(adata, f"write_{diskfmt}")(tmp_path / f"adata.{diskfmt}")

    assert "b'c'" in str(exc_info.value)


@pytest.mark.parametrize(
    "teststring",
    ["teststring", np.asarray(["test1", "test2", "test3"], dtype="object")],
)
@pytest.mark.parametrize("encoding", ["ascii", "utf-8"])
@pytest.mark.parametrize("length", [None, 15])
def test_hdf5_attribute_conversion(tmp_path, teststring, encoding, length):
    with h5py.File(tmp_path / "attributes.h5", "w") as file:
        dset = file.create_dataset("dset", data=np.arange(10))
        attrs = dset.attrs
        attrs.create(
            "string",
            teststring,
            dtype=h5py.h5t.string_dtype(encoding=encoding, length=length),
        )

        assert_equal(teststring, _read_attr(attrs, "string"))


def test_zarr_chunk_X(tmp_path):
    import zarr

    zarr_pth = Path(tmp_path) / "test.zarr"
    adata = gen_adata((100, 100), X_type=np.array)
    adata.write_zarr(zarr_pth, chunks=(10, 10))

    z = zarr.open(str(zarr_pth))  # As of v2.3.2 zarr won’t take a Path
    assert z["X"].chunks == (10, 10)
    from_zarr = ad.read_zarr(zarr_pth)
    assert_equal(from_zarr, adata)


################################
# Round-tripping scanpy datasets
################################


def _do_roundtrip(
    adata: ad.AnnData, pth: Path, diskfmt: Literal["h5ad", "zarr"]
) -> ad.AnnData:
    getattr(adata, f"write_{diskfmt}")(pth)
    return getattr(ad, f"read_{diskfmt}")(pth)


@pytest.fixture
def roundtrip(diskfmt):
    return partial(_do_roundtrip, diskfmt=diskfmt)


def test_write_string_types(tmp_path, diskfmt, roundtrip):
    # https://github.com/scverse/anndata/issues/456
    adata_pth = tmp_path / f"adata.{diskfmt}"

    adata = ad.AnnData(
        obs=pd.DataFrame(
            np.ones((3, 2)),
            columns=["a", np.str_("b")],
            index=["a", "b", "c"],
        ),
    )

    from_disk = roundtrip(adata, adata_pth)

    assert_equal(adata, from_disk)


@pytest.mark.skipif(not find_spec("scanpy"), reason="Scanpy is not installed")
def test_scanpy_pbmc68k(tmp_path, diskfmt, roundtrip, diskfmt2):
    roundtrip2 = partial(_do_roundtrip, diskfmt=diskfmt2)

    filepth1 = tmp_path / f"test1.{diskfmt}"
    filepth2 = tmp_path / f"test2.{diskfmt2}"

    with warnings.catch_warnings():
        warnings.filterwarnings(
            "ignore", message=r"Importing read_.* from `anndata` is deprecated"
        )
        import scanpy as sc

    with warnings.catch_warnings():
        warnings.simplefilter("ignore", ad.OldFormatWarning)
        pbmc = sc.datasets.pbmc68k_reduced()
        # zarr v3 can't write recarray
        # https://github.com/zarr-developers/zarr-python/issues/2134
        if ad.settings.zarr_write_format == 3:
            del pbmc.uns["rank_genes_groups"]["names"]
            del pbmc.uns["rank_genes_groups"]["scores"]

    from_disk1 = roundtrip(pbmc, filepth1)  # Do we read okay
    from_disk2 = roundtrip2(from_disk1, filepth2)  # Can we round trip

    assert_equal(pbmc, from_disk1)  # Not expected to be exact due to `nan`s
    assert_equal(pbmc, from_disk2)


@pytest.mark.skipif(not find_spec("scanpy"), reason="Scanpy is not installed")
def test_scanpy_krumsiek11(tmp_path, diskfmt, roundtrip):
    filepth = tmp_path / f"test.{diskfmt}"
    with warnings.catch_warnings():
        warnings.filterwarnings(
            "ignore", message=r"Importing read_.* from `anndata` is deprecated"
        )
        import scanpy as sc

    # TODO: this should be fixed in scanpy instead
    with pytest.warns(UserWarning, match=r"Observation names are not unique"):
        orig = sc.datasets.krumsiek11()
    del orig.uns["highlights"]  # Can’t write int keys
    # Can’t write "string" dtype: https://github.com/scverse/anndata/issues/679
    orig.obs["cell_type"] = orig.obs["cell_type"].astype(str)
    with pytest.warns(UserWarning, match=r"Observation names are not unique"):
        curr = roundtrip(orig, filepth)

    assert_equal(orig, curr, exact=True)


# Checking if we can read legacy zarr files
# TODO: Check how I should add this file to the repo
@pytest.mark.filterwarnings("ignore::anndata.OldFormatWarning")
@pytest.mark.skipif(not find_spec("scanpy"), reason="Scanpy is not installed")
@pytest.mark.skipif(
    not Path(HERE / "data/pbmc68k_reduced_legacy.zarr.zip").is_file(),
    reason="File not present.",
)
def test_backwards_compat_zarr():
    with warnings.catch_warnings():
        warnings.filterwarnings(
            "ignore", message=r"Importing read_.* from `anndata` is deprecated"
        )
        import scanpy as sc
    import zarr

    pbmc_orig = sc.datasets.pbmc68k_reduced()
    # Old zarr writer couldn’t do sparse arrays
    pbmc_orig.raw._X = pbmc_orig.raw.X.toarray()
    del pbmc_orig.uns["neighbors"]
    # Since these have moved, see PR #337
    del pbmc_orig.obsp["distances"]
    del pbmc_orig.obsp["connectivities"]

    # This was written out with anndata=0.6.22.post1
    zarrpth = HERE / "data/pbmc68k_reduced_legacy.zarr.zip"
    with zarr.ZipStore(zarrpth, mode="r") as z:
        pbmc_zarr = ad.read_zarr(z)

    assert_equal(pbmc_zarr, pbmc_orig)


def test_adata_in_uns(tmp_path, diskfmt, roundtrip):
    pth = tmp_path / f"adatas_in_uns.{diskfmt}"

    orig = gen_adata((4, 5))
    orig.uns["adatas"] = {
        "a": gen_adata((1, 2)),
        "b": gen_adata((12, 8)),
    }
    another_one = gen_adata((2, 5))
    another_one.raw = gen_adata((2, 7))
    orig.uns["adatas"]["b"].uns["another_one"] = another_one

    curr = roundtrip(orig, pth)

    assert_equal(orig, curr)


@pytest.mark.parametrize(
    "uns_val",
    [
        pytest.param(dict(base=None), id="dict_val"),
        pytest.param(
            pd.DataFrame(dict(col_0=["string", None])).convert_dtypes(), id="df"
        ),
    ],
)
def test_none_dict_value_in_uns(diskfmt, tmp_path, roundtrip, uns_val):
    pth = tmp_path / f"adata_dtype.{diskfmt}"

    orig = ad.AnnData(np.ones((3, 4)), uns=dict(val=uns_val))
    with ad.settings.override(allow_write_nullable_strings=True):
        curr = roundtrip(orig, pth)

    if isinstance(orig.uns["val"], pd.DataFrame):
        pd.testing.assert_frame_equal(curr.uns["val"], orig.uns["val"])
    else:
        assert curr.uns["val"] == orig.uns["val"]


def test_io_dtype(tmp_path, diskfmt, dtype, roundtrip):
    pth = tmp_path / f"adata_dtype.{diskfmt}"

    orig = ad.AnnData(np.ones((5, 8), dtype=dtype))
    curr = roundtrip(orig, pth)

    assert curr.X.dtype == dtype


def test_h5py_attr_limit(tmp_path):
    N = 10_000
    a = ad.AnnData(np.ones((5, 10)))
    a.obsm["df"] = pd.DataFrame(
        np.ones((5, N)), index=a.obs_names, columns=[str(i) for i in range(N)]
    )
    a.write(tmp_path / "tmp.h5ad")


@pytest.mark.parametrize(
    "elem_key", ["obs", "var", "obsm", "varm", "layers", "obsp", "varp", "uns"]
)
def test_forward_slash_key(elem_key, tmp_path):
    a = ad.AnnData(np.ones((10, 10)))
    getattr(a, elem_key)["bad/key"] = np.ones(
        (10,) if elem_key in ["obs", "var"] else (10, 10)
    )
    with pytest.raises(ValueError, match="Forward slashes"):
        a.write_h5ad(tmp_path / "does_not_matter_the_path.h5ad")


@pytest.mark.skipif(
    find_spec("xarray"), reason="Xarray is installed so `read_lazy` will not error"
)
def test_read_lazy_import_error():
    with pytest.raises(ImportError, match="xarray"):
        ad.experimental.read_lazy("test.zarr")