File: test_read.py

package info (click to toggle)
python-anndata 0.12.6-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,876 kB
  • sloc: python: 21,429; makefile: 23
file content (224 lines) | stat: -rw-r--r-- 7,825 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
from __future__ import annotations

from importlib.util import find_spec
from typing import TYPE_CHECKING

import numpy as np
import pandas as pd
import pytest
import zarr

from anndata import AnnData
from anndata.compat import DaskArray
from anndata.experimental import read_elem_lazy, read_lazy
from anndata.io import write_elem
from anndata.tests.helpers import (
    GEN_ADATA_NO_XARRAY_ARGS,
    AccessTrackingStore,
    assert_equal,
    gen_adata,
    gen_typed_df,
)

from .conftest import ANNDATA_ELEMS

if TYPE_CHECKING:
    from collections.abc import Callable
    from pathlib import Path

    from anndata._types import AnnDataElem


pytestmark = pytest.mark.skipif(not find_spec("xarray"), reason="xarray not installed")


@pytest.mark.parametrize(
    ("elem_key", "sub_key"),
    [
        ("raw", "X"),
        ("obs", "cat"),
        ("obs", "int64"),
        *((elem_name, None) for elem_name in ANNDATA_ELEMS),
    ],
)
def test_access_count_elem_access(
    remote_store_tall_skinny: AccessTrackingStore,
    adata_remote_tall_skinny: AnnData,
    elem_key: AnnDataElem,
    sub_key: str,
    simple_subset_func: Callable[[AnnData], AnnData],
):
    full_path = f"{elem_key}/{sub_key}" if sub_key is not None else elem_key
    remote_store_tall_skinny.initialize_key_trackers({full_path, "X"})
    # a series of methods that should __not__ read in any data
    elem = getattr(simple_subset_func(adata_remote_tall_skinny), elem_key)
    if sub_key is not None:
        if elem_key in {"obs", "var"}:
            elem[sub_key]
        else:
            getattr(elem, sub_key)
    remote_store_tall_skinny.assert_access_count(full_path, 0)
    remote_store_tall_skinny.assert_access_count("X", 0)


def test_access_count_subset(
    remote_store_tall_skinny: AccessTrackingStore,
    adata_remote_tall_skinny: AnnData,
):
    non_obs_elem_names = filter(lambda e: e != "obs", ANNDATA_ELEMS)
    remote_store_tall_skinny.initialize_key_trackers([
        "obs/cat/codes",
        *non_obs_elem_names,
    ])
    adata_remote_tall_skinny[adata_remote_tall_skinny.obs["cat"] == "a", :]
    # all codes read in for subset (from 4 chunks as set in the fixture)
    remote_store_tall_skinny.assert_access_count("obs/cat/codes", 4)
    for elem_name in non_obs_elem_names:
        remote_store_tall_skinny.assert_access_count(elem_name, 0)


def test_access_count_subset_column_compute(
    remote_store_tall_skinny: AccessTrackingStore,
    adata_remote_tall_skinny: AnnData,
):
    remote_store_tall_skinny.initialize_key_trackers(["obs/int64"])
    adata_remote_tall_skinny[adata_remote_tall_skinny.shape[0] // 2, :].obs[
        "int64"
    ].compute()
    # two chunks needed for 0:10 subset
    remote_store_tall_skinny.assert_access_count("obs/int64", 1)


def test_access_count_index(
    remote_store_tall_skinny: AccessTrackingStore,
):
    remote_store_tall_skinny.initialize_key_trackers(["obs/_index"])
    read_lazy(remote_store_tall_skinny, load_annotation_index=False)
    remote_store_tall_skinny.assert_access_count("obs/_index", 0)
    read_lazy(remote_store_tall_skinny)
    # 4 is number of chunks
    remote_store_tall_skinny.assert_access_count("obs/_index", 4)


def test_access_count_dtype(
    remote_store_tall_skinny: AccessTrackingStore,
    adata_remote_tall_skinny: AnnData,
):
    remote_store_tall_skinny.initialize_key_trackers(["obs/cat/categories"])
    remote_store_tall_skinny.assert_access_count("obs/cat/categories", 0)
    # This should only cause categories to be read in once
    adata_remote_tall_skinny.obs["cat"].dtype  # noqa: B018
    adata_remote_tall_skinny.obs["cat"].dtype  # noqa: B018
    adata_remote_tall_skinny.obs["cat"].dtype  # noqa: B018
    remote_store_tall_skinny.assert_access_count("obs/cat/categories", 1)


def test_uns_uses_dask(adata_remote: AnnData):
    assert isinstance(adata_remote.uns["nested"]["nested_further"]["array"], DaskArray)


def test_to_memory(adata_remote: AnnData, adata_orig: AnnData):
    remote_to_memory = adata_remote.to_memory()
    assert_equal(remote_to_memory, adata_orig)


def test_access_counts_obsm_df(tmp_path: Path):
    adata = AnnData(
        X=np.array(np.random.rand(100, 20)),
    )
    adata.obsm["df"] = pd.DataFrame(
        {"col1": np.random.rand(100), "col2": np.random.rand(100)},
        index=adata.obs_names,
    )
    adata.write_zarr(tmp_path)
    store = AccessTrackingStore(tmp_path)
    store.initialize_key_trackers(["obsm/df"])
    read_lazy(store, load_annotation_index=False)
    store.assert_access_count("obsm/df", 0)


def test_view_to_memory(adata_remote: AnnData, adata_orig: AnnData):
    obs_cats = adata_orig.obs["obs_cat"].cat.categories
    subset_obs = adata_orig.obs["obs_cat"] == obs_cats[0]
    assert_equal(adata_orig[subset_obs, :], adata_remote[subset_obs, :].to_memory())

    var_cats = adata_orig.var["var_cat"].cat.categories
    subset_var = adata_orig.var["var_cat"] == var_cats[0]
    assert_equal(adata_orig[:, subset_var], adata_remote[:, subset_var].to_memory())


def test_view_of_view_to_memory(adata_remote: AnnData, adata_orig: AnnData):
    cats_obs = adata_orig.obs["obs_cat"].cat.categories
    subset_obs = (adata_orig.obs["obs_cat"] == cats_obs[0]) | (
        adata_orig.obs["obs_cat"] == cats_obs[1]
    )
    subsetted_adata = adata_orig[subset_obs, :]
    subset_subset_obs = subsetted_adata.obs["obs_cat"] == cats_obs[1]
    subsetted_subsetted_adata = subsetted_adata[subset_subset_obs, :]
    assert_equal(
        subsetted_subsetted_adata,
        adata_remote[subset_obs, :][subset_subset_obs, :].to_memory(),
    )

    cats_var = adata_orig.var["var_cat"].cat.categories
    subset_var = (adata_orig.var["var_cat"] == cats_var[0]) | (
        adata_orig.var["var_cat"] == cats_var[1]
    )
    subsetted_adata = adata_orig[:, subset_var]
    subset_subset_var = subsetted_adata.var["var_cat"] == cats_var[1]
    subsetted_subsetted_adata = subsetted_adata[:, subset_subset_var]
    assert_equal(
        subsetted_subsetted_adata,
        adata_remote[:, subset_var][:, subset_subset_var].to_memory(),
    )


@pytest.mark.zarr_io
def test_unconsolidated(tmp_path: Path, mtx_format):
    adata = gen_adata((10, 10), mtx_format, **GEN_ADATA_NO_XARRAY_ARGS)
    orig_pth = tmp_path / "orig.zarr"
    adata.write_zarr(orig_pth)
    (orig_pth / ".zmetadata").unlink()
    store = AccessTrackingStore(orig_pth)
    store.initialize_key_trackers(["obs/.zgroup", ".zgroup"])
    with pytest.warns(UserWarning, match=r"Did not read zarr as consolidated"):
        remote = read_lazy(store)
    remote_to_memory = remote.to_memory()
    assert_equal(remote_to_memory, adata)
    store.assert_access_count("obs/.zgroup", 1)


def test_h5_file_obj(tmp_path: Path):
    adata = gen_adata((10, 10), **GEN_ADATA_NO_XARRAY_ARGS)
    orig_pth = tmp_path / "adata.h5ad"
    adata.write_h5ad(orig_pth)
    remote = read_lazy(orig_pth)
    assert remote.file.is_open
    assert remote.filename == orig_pth
    assert_equal(remote.to_memory(), adata)


@pytest.fixture(scope="session")
def df_group(tmp_path_factory) -> zarr.Group:
    df = gen_typed_df(120)
    path = tmp_path_factory.mktemp("foo.zarr")
    g = zarr.open_group(path, mode="w", zarr_format=2)
    write_elem(g, "foo", df, dataset_kwargs={"chunks": 25})
    return zarr.open(path, mode="r")["foo"]


@pytest.mark.parametrize(
    ("chunks", "expected_chunks"),
    [((1,), (1,)), ((-1,), (120,)), (None, (25,))],
    ids=["small", "minus_one_uses_full", "none_uses_ondisk_chunking"],
)
def test_chunks_df(
    tmp_path: Path,
    chunks: tuple[int] | None,
    expected_chunks: tuple[int],
    df_group: zarr.Group,
):
    ds = read_elem_lazy(df_group, chunks=chunks)
    for k in ds:
        if isinstance(arr := ds[k].data, DaskArray):
            assert arr.chunksize == expected_chunks