1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
|
"""Tests related to awkward arrays"""
from __future__ import annotations
import warnings
import numpy as np
import numpy.testing as npt
import pandas as pd
import pytest
import anndata
from anndata import (
AnnData,
ImplicitModificationWarning,
read_h5ad,
)
pytest.importorskip("pyarrow")
from anndata.compat import AwkArray
from anndata.compat import awkward as ak
from anndata.tests.helpers import assert_equal, gen_adata, gen_awkward
from anndata.utils import axis_len
@pytest.mark.parametrize(
("array", "shape"),
[
# numpy array
(ak.Array(np.arange(2 * 3 * 4 * 5).reshape((2, 3, 4, 5))), (2, 3, 4, 5)),
# record
(ak.Array([{"a": 1, "b": 2}, {"a": 1, "b": 3}]), (2, 2)),
# ListType, variable length
(ak.Array([[1], [2, 3], [4, 5, 6]]), (3, None)),
# ListType, happens to have the same length, but is not regular
(ak.Array([[2], [3], [4]]), (3, None)),
# RegularType + nested ListType
(ak.to_regular(ak.Array([[[1, 2], [3]], [[2], [3, 4, 5]]]), 1), (2, 2, None)),
# nested record
(
ak.to_regular(ak.Array([[{"a": 0}, {"b": 1}], [{"c": 2}, {"d": 3}]]), 1),
(2, 2, 4),
),
# mixed types (variable length)
(ak.Array([[1, 2], ["a"]]), (2, None)),
# mixed types (but regular)
(ak.to_regular(ak.Array([[1, 2], ["a", "b"]]), 1), (2, 2)),
# zero-size edge cases
(ak.Array(np.ones((0, 7))), (0, 7)),
(ak.Array(np.ones((7, 0))), (7, 0)),
# UnionType of two regular types with different dimensions
(
ak.concatenate([ak.Array(np.ones((2, 2))), ak.Array(np.ones((2, 3)))]),
(4, None),
),
# UnionType of two regular types with same dimension
(
ak.concatenate([
ak.Array(np.ones((2, 2))),
ak.Array(np.array([["a", "a"], ["a", "a"]])),
]),
(4, 2),
),
# Array of string types
(ak.Array(["a", "b", "c"]), (3,)),
(ak.Array([["a", "b"], ["c", "d"], ["e", "f"]]), (3, None)),
(ak.to_regular(ak.Array([["a", "b"], ["c", "d"], ["e", "f"]]), 1), (3, 2)),
],
)
def test_axis_len(array, shape):
"""Test that axis_len returns the right value for awkward arrays."""
for axis, size in enumerate(shape):
assert size == axis_len(array, axis)
# Requesting the size for an axis higher than the array has dimensions should raise a TypeError
with pytest.raises(TypeError):
axis_len(array, len(shape))
@pytest.mark.parametrize(
("field", "value", "valid"),
[
("obsm", gen_awkward((10, 5)), True),
("obsm", gen_awkward((10, None)), True),
("obsm", gen_awkward((10, None, None)), True),
("obsm", gen_awkward((10, 5, None)), True),
("obsm", gen_awkward((8, 10)), False),
("obsm", gen_awkward((8, None)), False),
("varm", gen_awkward((20, 5)), True),
("varm", gen_awkward((20, None)), True),
("varm", gen_awkward((20, None, None)), True),
("varm", gen_awkward((20, 5, None)), True),
("varm", gen_awkward((8, 20)), False),
("varm", gen_awkward((8, None)), False),
("uns", gen_awkward((7,)), True),
("uns", gen_awkward((7, None)), True),
("uns", gen_awkward((7, None, None)), True),
],
)
def test_set_awkward(field, value, valid):
"""Check if we can set obsm, .varm and .uns with different types
of awkward arrays and if error messages are properly raised when the dimensions do not align.
"""
adata = gen_adata((10, 20), varm_types=(), obsm_types=(), layers_types=())
def _assign():
getattr(adata, field)["test"] = value
if not valid:
with pytest.raises(ValueError, match="incorrect shape"):
_assign()
else:
_assign()
@pytest.mark.parametrize("key", ["obsm", "varm", "uns"])
def test_copy(key):
"""Check that modifying a copy does not modify the original"""
adata = gen_adata((3, 3), varm_types=(), obsm_types=(), layers_types=())
getattr(adata, key)["awk"] = ak.Array([{"a": [1], "b": [2], "c": [3]}] * 3)
adata_copy = adata.copy()
getattr(adata_copy, key)["awk"]["c"] = np.full((3, 1), 4)
getattr(adata_copy, key)["awk"]["d"] = np.full((3, 1), 5)
# values in copy were correctly set
npt.assert_equal(getattr(adata_copy, key)["awk"]["c"], np.full((3, 1), 4))
npt.assert_equal(getattr(adata_copy, key)["awk"]["d"], np.full((3, 1), 5))
# values in original were not updated
npt.assert_equal(getattr(adata, key)["awk"]["c"], np.full((3, 1), 3))
with pytest.raises(IndexError):
getattr(adata, key)["awk"]["d"]
@pytest.mark.parametrize("key", ["obsm", "varm"])
def test_view(key):
"""Check that modifying a view does not modify the original"""
adata = gen_adata((3, 3), varm_types=(), obsm_types=(), layers_types=())
getattr(adata, key)["awk"] = ak.Array([{"a": [1], "b": [2], "c": [3]}] * 3)
adata_view = adata[:2, :2]
# TODO: is ācā sparse and ādā not? Or what happens here? Use proper names.
with pytest.warns(
ImplicitModificationWarning, match=r"initializing view as actual"
):
getattr(adata_view, key)["awk"]["c"] = np.full((2, 1), 4)
getattr(adata_view, key)["awk"]["d"] = np.full((2, 1), 5)
# values in view were correctly set
npt.assert_equal(getattr(adata_view, key)["awk"]["c"], np.full((2, 1), 4))
npt.assert_equal(getattr(adata_view, key)["awk"]["d"], np.full((2, 1), 5))
# values in original were not updated
npt.assert_equal(getattr(adata, key)["awk"]["c"], np.full((3, 1), 3))
with pytest.raises(IndexError):
getattr(adata, key)["awk"]["d"]
def test_view_of_awkward_array_with_custom_behavior():
"""Currently can't create view of arrays with custom __name__ (in this case "string")
See https://github.com/scverse/anndata/pull/647#discussion_r963494798_"""
from uuid import uuid4
BEHAVIOUR_ID = str(uuid4())
class ReversibleArray(ak.Array):
def reversed(self):
return self[..., ::-1]
ak.behavior[BEHAVIOUR_ID] = ReversibleArray
adata = gen_adata((3, 3), varm_types=(), obsm_types=(), layers_types=())
adata.obsm["awk_string"] = ak.with_parameter(
ak.Array(["AAA", "BBB", "CCC"]), "__list__", BEHAVIOUR_ID
)
adata_view = adata[:2]
with pytest.raises(NotImplementedError):
adata_view.obsm["awk_string"]
@pytest.mark.parametrize(
"array",
[
# numpy array
ak.Array(np.arange(2 * 3 * 4 * 5).reshape((2, 3, 4, 5))),
# record
ak.Array([{"a": 1, "b": 2}, {"a": 1, "b": 3}]),
# ListType, variable length
ak.Array([[1], [2, 3], [4, 5, 6]]),
# RegularType + nested ListType
ak.to_regular(ak.Array([[[1, 2], [3]], [[2], [3, 4, 5]]]), 1),
# nested record
ak.to_regular(ak.Array([[{"a": 0}, {"b": 1}], [{"c": 2}, {"d": 3}]]), 1),
# mixed types (variable length)
ak.Array([[1, 2], ["a"]]),
# zero-size edge cases
ak.Array(np.ones((0, 7))),
ak.Array(np.ones((7, 0))),
# UnionType of two regular types with different dimensions
ak.concatenate([ak.Array(np.ones((2, 2))), ak.Array(np.ones((2, 3)))]),
# UnionType of two regular types with same dimension
ak.concatenate([
ak.Array(np.ones((2, 2))),
ak.Array(np.array([["a", "a"], ["a", "a"]])),
]),
# categorical array
ak.str.to_categorical(ak.Array([["a", "b", "c"], ["a", "b"]])),
ak.str.to_categorical(ak.Array([[1, 1, 2], [3, 3]])),
# tyical record type with AIRR data consisting of different dtypes
ak.Array([
[
{
"v_call": "TRV1",
"junction_aa": "ADDEEKK",
"productive": True,
"locus": None,
"consensus_count": 3,
},
{
"v_call": "TRV2",
"productive": False,
"locus": "TRA",
"consensus_count": 4,
},
],
[
{
"v_call": None,
"junction_aa": "ADDEKK",
"productive": None,
"locus": "IGK",
"consensus_count": 3,
}
],
]),
],
)
def test_awkward_io(tmp_path, array):
adata = AnnData()
adata.uns["awk"] = array
adata_path = tmp_path / "adata.h5ad"
adata.write_h5ad(adata_path)
adata2 = read_h5ad(adata_path)
assert_equal(adata.uns["awk"], adata2.uns["awk"], exact=True)
def test_awkward_io_view(tmp_path):
"""Check that views are converted to actual arrays on save, i.e. the _view_args and __list__ parameters are removed"""
adata = gen_adata((3, 3), varm_types=(), obsm_types=(AwkArray,), layers_types=())
v = adata[1:]
adata_path = tmp_path / "adata.h5ad"
v.write_h5ad(adata_path)
adata2 = read_h5ad(adata_path)
# parameters are not fully removed, but set to None
assert ak.parameters(adata2.obsm["awk_2d_ragged"]) == {
"__list__": None,
"_view_args": None,
}
# @pytest.mark.parametrize("join", ["outer", "inner"])
@pytest.mark.parametrize(
("arrays", "join", "expected"),
[
pytest.param(
[ak.Array([{"a": [1, 2], "b": [1, 2]}, {"a": [3], "b": [4]}]), None],
"inner",
None,
id="awk:recordoflists_null-inner",
),
pytest.param(
[ak.Array([{"a": [1, 2], "b": [1, 2]}, {"a": [3], "b": [4]}]), None],
"outer",
ak.Array([
{"a": [1, 2], "b": [1, 2]},
{"a": [3], "b": [4]},
*[None, None, None],
]),
# maybe should return: ak.Array([{"a": [1, 2], "b": [1, 2]}, {"a": [3], "b": [4]}, {}, {}, {}]),
id="awk:recordoflists_null-outer",
),
pytest.param(
[ak.Array([[{"a": 1}, {"a": 2}], []]), None],
"outer",
ak.Array([[{"a": 1}, {"a": 2}], [], None, None, None]),
# maybe should return: ak.Array([[{"a": 1}, {"a": 2}], [], [], []]),
id="awk:listofrecords_null-outer",
),
pytest.param(
[None, ak.Array([{"a": [1, 2], "b": [1, 2]}, {"a": [3], "b": [4]}])],
"inner",
None,
id="null_awk-inner",
),
pytest.param(
[None, ak.Array([{"a": [1, 2], "b": [1, 2]}, {"a": [3], "b": [4]}])],
"outer",
ak.Array([
*[None, None, None],
{"a": [1, 2], "b": [1, 2]},
{"a": [3], "b": [4]},
]),
# maybe should return: ak.Array([{}, {}, {}, {"a": [1, 2], "b": [1, 2]}, {"a": [3], "b": [4]}]),
id="null_awk:recordoflists-outer",
),
pytest.param(
[ak.Array([{"a": 1}, {"a": 2}]), ak.Array([{"a": 3}, {"a": 4}])],
"inner",
ak.Array([{"a": i} for i in range(1, 5)]),
id="awk-simple-record",
),
pytest.param(
[
ak.Array([{"a": 1, "b": 1}, {"a": 2, "b": 2}]),
ak.Array([{"a": 3}, {"a": 4}]),
],
"inner",
ak.Array([{"a": i} for i in range(1, 5)]),
id="awk-simple-record-inner",
),
# TODO:
# pytest.param(
# [
# ak.Array([{"a": 1, "b": 1}, {"a": 2, "b": 2}]),
# ak.Array([{"a": 3}, {"a": 4}]),
# ],
# "outer",
# ak.Array([{"a": 1, "b": 1}, {"a": 2, "b": 2}, {"a": 3}, {"a": 4},]),
# id="awk-simple-record-outer",
# ),
pytest.param(
[
None,
ak.Array([{"a": [1, 2], "b": [1, 2]}, {"a": [3], "b": [4]}]),
pd.DataFrame(),
],
"outer",
NotImplementedError, # TODO: ak.Array([{}, {}, {}, {"a": [1, 2], "b": [1, 2]}, {"a": [3], "b": [4]}]),
id="null_awk_empty-pd",
),
pytest.param(
[
ak.Array([{"a": [1, 2], "b": [1, 2]}, {"a": [3], "b": [4]}]),
pd.DataFrame(),
],
"outer",
NotImplementedError, # TODO: ak.Array([{"a": [1, 2], "b": [1, 2]}, {"a": [3], "b": [4]}]),
id="awk_empty-pd",
),
pytest.param(
[
ak.Array([{"a": [1, 2], "b": [1, 2]}, {"a": [3], "b": [4]}]),
pd.DataFrame().assign(a=[3, 4], b=[5, 6]),
],
"outer", # TODO: Should try inner too if implemented
NotImplementedError,
),
pytest.param(
[
ak.Array([{"a": [1, 2], "b": [1, 2]}, {"a": [3], "b": [4]}]),
np.ones((3, 2)),
],
"outer",
NotImplementedError,
),
],
)
@pytest.mark.parametrize("key", ["obsm", "varm"])
def test_concat_mixed_types(key, arrays, expected, join):
"""Test that concatenation of AwkwardArrays with arbitrary types, but zero length dimension
or missing values works."""
axis = 0 if key == "obsm" else 1
to_concat = []
cell_id, gene_id = 0, 0
for a in arrays:
shape = np.array([3, 3]) # default shape (in case of missing array)
if a is not None:
length = axis_len(a, 0)
shape[axis] = length
tmp_adata = gen_adata(
tuple(shape), varm_types=(), obsm_types=(), layers_types=()
)
prev_cell_id, prev_gene_id = cell_id, gene_id
cell_id, gene_id = cell_id + shape[0], gene_id + shape[1]
tmp_adata.obs_names = pd.RangeIndex(prev_cell_id, cell_id).astype(str)
tmp_adata.var_names = pd.RangeIndex(prev_gene_id, gene_id).astype(str)
if a is not None:
if isinstance(a, pd.DataFrame):
a.set_index(
tmp_adata.obs_names if key == "obsm" else tmp_adata.var_names,
inplace=True,
)
getattr(tmp_adata, key)["test"] = a
to_concat.append(tmp_adata)
if isinstance(expected, type) and issubclass(expected, Exception):
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
r"The behavior of DataFrame concatenation with empty or all-NA entries is deprecated",
FutureWarning,
)
with pytest.raises(expected):
anndata.concat(to_concat, axis=axis, join=join)
else:
result_adata = anndata.concat(to_concat, axis=axis, join=join)
result = getattr(result_adata, key).get("test", None)
assert_equal(expected, result, exact=True)
|