1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
|
"""Tests for backing using the `.file` and `.isbacked` attributes."""
from __future__ import annotations
from typing import TYPE_CHECKING
import joblib
import numpy as np
import pytest
from scipy import sparse
import anndata as ad
from anndata.tests.helpers import (
GEN_ADATA_DASK_ARGS,
GEN_ADATA_NO_XARRAY_ARGS,
as_dense_dask_array,
assert_equal,
gen_adata,
subset_func,
)
from anndata.utils import asarray
if TYPE_CHECKING:
from collections.abc import Callable
from pathlib import Path
from typing import Literal
from anndata.compat import DaskArray
subset_func2 = subset_func
# -------------------------------------------------------------------------------
# Some test data
# -------------------------------------------------------------------------------
@pytest.fixture
def adata() -> ad.AnnData:
X_list = [
[1, 2, 3],
[4, 5, 6],
[7, 8, 9],
] # data matrix of shape n_obs x n_vars
X = np.array(X_list)
obs_dict = dict( # annotation of observations / rows
row_names=["name1", "name2", "name3"], # row annotation
oanno1=["cat1", "cat2", "cat2"], # categorical annotation
oanno2=["o1", "o2", "o3"], # string annotation
oanno3=[2.1, 2.2, 2.3], # float annotation
)
var_dict = dict(vanno1=[3.1, 3.2, 3.3]) # annotation of variables / columns
uns_dict = dict( # unstructured annotation
oanno1_colors=["#000000", "#FFFFFF"], uns2=["some annotation"]
)
return ad.AnnData(
X,
obs=obs_dict,
var=var_dict,
uns=uns_dict,
obsm=dict(o1=np.zeros((X.shape[0], 10))),
varm=dict(v1=np.ones((X.shape[1], 20))),
layers=dict(float=X.astype(float), sparse=sparse.csr_matrix(X)),
)
@pytest.fixture(
params=[sparse.csr_matrix, sparse.csc_matrix, np.array, as_dense_dask_array],
ids=["scipy-csr", "scipy-csc", "np-array", "dask_array"],
)
def mtx_format(
request,
) -> Callable[
[np.ndarray], DaskArray | np.ndarray | sparse.csr_array | sparse.csr_matrix
]:
return request.param
@pytest.fixture(params=[sparse.csr_matrix, sparse.csc_matrix])
def sparse_format(request) -> type[sparse.csr_matrix | sparse.csc_matrix]:
return request.param
@pytest.fixture(params=["r+", "r", False])
def backed_mode(request) -> Literal["r+", "r", False]:
return request.param
@pytest.fixture(params=(("X",), ()))
def as_dense(request) -> tuple[str] | tuple:
return request.param
# -------------------------------------------------------------------------------
# The test functions
# -------------------------------------------------------------------------------
# h5py internally calls `product` on min-versions
@pytest.mark.filterwarnings("ignore:`product` is deprecated as of NumPy 1.25.0")
# TODO: Check to make sure obs, obsm, layers, ... are written and read correctly as well
@pytest.mark.filterwarnings("error")
def test_read_write_X(
tmp_path: Path,
mtx_format: Callable[
[np.ndarray], DaskArray | np.ndarray | sparse.csr_array | sparse.csr_matrix
],
backed_mode: Literal["r+", "r", False],
*,
as_dense: tuple[str] | tuple,
):
orig_pth = tmp_path / "orig.h5ad"
backed_pth = tmp_path / "backed.h5ad"
orig = ad.AnnData(mtx_format(asarray(sparse.random(10, 10, format="csr"))))
orig.write(orig_pth)
backed = ad.read_h5ad(orig_pth, backed=backed_mode)
backed.write(backed_pth, as_dense=as_dense)
backed.file.close()
from_backed = ad.read_h5ad(backed_pth)
assert np.all(asarray(orig.X) == asarray(from_backed.X))
def test_backed_view(tmp_path: Path, backed_mode: Literal["r+", "r", False]):
orig_pth = tmp_path / "orig.h5ad"
orig = ad.AnnData(sparse.random(100, 10, format="csr"))
orig.write(orig_pth)
adata = ad.read_h5ad(orig_pth, backed=backed_mode)
for i in range(0, adata.shape[0], 10):
chunk_path = tmp_path / f"chunk_{i}.h5ad"
adata[i : i + 5].write_h5ad(tmp_path / f"chunk_{i}.h5ad")
chunk = adata[i : i + 5]
assert_equal(chunk, ad.read_h5ad(chunk_path))
# this is very similar to the views test
@pytest.mark.filterwarnings("ignore::anndata.ImplicitModificationWarning")
def test_backing(adata: ad.AnnData, tmp_path: Path, backing_h5ad: Path) -> None:
assert not adata.isbacked
adata.filename = backing_h5ad
adata.write()
assert not adata.file.is_open
assert adata.isbacked
assert adata[:, 0].is_view
assert adata[:, 0].X.tolist() == np.reshape([1, 4, 7], (3, 1)).tolist()
# this might give us a trouble as the user might not
# know that the file is open again....
assert adata.file.is_open
adata[:2, 0].X = [0, 0]
assert adata[:, 0].X.tolist() == np.reshape([0, 0, 7], (3, 1)).tolist()
adata_subset = adata[:2, [0, 1]]
assert adata_subset.is_view
subset_hash = joblib.hash(adata_subset)
# cannot set view in backing mode...
with pytest.raises(ValueError, match=r"pass a filename.*to_memory"):
adata_subset.obs["foo"] = range(2)
with pytest.raises(ValueError, match=r"pass a filename.*to_memory"):
adata_subset.var["bar"] = -12
with pytest.raises(ValueError, match=r"pass a filename.*to_memory"):
adata_subset.obsm["o2"] = np.ones((2, 2))
with pytest.raises(ValueError, match=r"pass a filename.*to_memory"):
adata_subset.varm["v2"] = np.zeros((2, 2))
with pytest.raises(ValueError, match=r"pass a filename.*to_memory"):
adata_subset.layers["float2"] = adata_subset.layers["float"].copy()
# Things should stay the same after failed operations
assert subset_hash == joblib.hash(adata_subset)
assert adata_subset.is_view
# need to copy first
adata_subset = adata_subset.copy(tmp_path / "test.subset.h5ad")
# now transition to actual object
assert not adata_subset.is_view
adata_subset.obs["foo"] = range(2)
assert not adata_subset.is_view
assert adata_subset.isbacked
assert adata_subset.obs["foo"].tolist() == list(range(2))
# save
adata_subset.write()
def test_backing_copy(adata, tmp_path: Path, backing_h5ad: Path):
adata.filename = backing_h5ad
adata.write()
copypath = tmp_path / "test.copy.h5ad"
copy = adata.copy(copypath)
assert adata.filename == backing_h5ad
assert copy.filename == copypath
assert adata.isbacked
assert copy.isbacked
# TODO: Also test updating the backing file inplace
def test_backed_raw(tmp_path: Path):
backed_pth = tmp_path / "backed.h5ad"
final_pth = tmp_path / "final.h5ad"
mem_adata = gen_adata((10, 10), **GEN_ADATA_DASK_ARGS)
mem_adata.raw = mem_adata
mem_adata.write(backed_pth)
backed_adata = ad.read_h5ad(backed_pth, backed="r")
assert_equal(backed_adata, mem_adata)
backed_adata.write_h5ad(final_pth)
final_adata = ad.read_h5ad(final_pth)
assert_equal(final_adata, mem_adata)
@pytest.mark.parametrize(
"array_type",
[
pytest.param(asarray, id="dense_array"),
pytest.param(sparse.csr_matrix, id="csr_matrix"),
pytest.param(sparse.csr_array, id="csr_array"),
],
)
def test_backed_raw_subset(
tmp_path: Path,
array_type: Callable[
[np.ndarray], np.ndarray | sparse.csr_array | sparse.csr_matrix
],
subset_func: Callable[[ad.AnnData], ad.AnnData],
subset_func2: Callable[[ad.AnnData], ad.AnnData],
):
backed_pth = tmp_path / "backed.h5ad"
final_pth = tmp_path / "final.h5ad"
mem_adata = gen_adata((10, 10), X_type=array_type, **GEN_ADATA_NO_XARRAY_ARGS)
mem_adata.raw = mem_adata
obs_idx = subset_func(mem_adata.obs_names)
var_idx = subset_func2(mem_adata.var_names)
mem_adata.write(backed_pth)
### Backed view has same values as in memory view ###
backed_adata = ad.read_h5ad(backed_pth, backed="r")
backed_v = backed_adata[obs_idx, var_idx]
assert backed_v.is_view
mem_v = mem_adata[obs_idx, var_idx]
# Value equivalent
assert_equal(mem_v, backed_v)
# Type and value equivalent
assert_equal(mem_v.copy(), backed_v.to_memory(copy=True), exact=True)
assert backed_v.is_view
assert backed_v.isbacked
### Write from backed view ###
backed_v.write_h5ad(final_pth)
final_adata = ad.read_h5ad(final_pth)
assert_equal(mem_v, final_adata)
assert_equal(final_adata, backed_v.to_memory()) # assert loading into memory
@pytest.mark.parametrize(
"array_type",
[
pytest.param(asarray, id="dense_array"),
pytest.param(sparse.csr_matrix, id="csr_matrix"),
pytest.param(as_dense_dask_array, id="dask_array"),
],
)
def test_to_memory_full(
tmp_path: Path,
array_type: Callable[[np.ndarray], np.ndarray | DaskArray | sparse.csr_matrix],
):
backed_pth = tmp_path / "backed.h5ad"
mem_adata = gen_adata((15, 10), X_type=array_type, **GEN_ADATA_DASK_ARGS)
mem_adata.raw = gen_adata((15, 12), X_type=array_type, **GEN_ADATA_DASK_ARGS)
mem_adata.write_h5ad(backed_pth, compression="lzf")
backed_adata = ad.read_h5ad(backed_pth, backed="r")
assert_equal(mem_adata, backed_adata.to_memory())
# Test that raw can be removed
del backed_adata.raw
del mem_adata.raw
assert_equal(mem_adata, backed_adata.to_memory())
def test_double_index(adata: ad.AnnData, backing_h5ad: Path):
adata.filename = backing_h5ad
with pytest.raises(ValueError, match=r"cannot make a view of a view"):
# no view of view of backed object currently
adata[:2][:, 0]
# close backing file
adata.write()
def test_return_to_memory_mode(adata: ad.AnnData, backing_h5ad: Path):
bdata = adata.copy()
adata.filename = backing_h5ad
assert adata.isbacked
adata.filename = None
assert not adata.isbacked
assert adata.X is not None
# make sure the previous file had been properly closed
# when setting `adata.filename = None`
# if it hadn’t the following line would throw an error
bdata.filename = backing_h5ad
# close the file
bdata.filename = None
def test_backed_modification(adata: ad.AnnData, backing_h5ad: Path):
adata.X[:, 1] = 0 # Make it a little sparse
adata.X = sparse.csr_matrix(adata.X)
assert not adata.isbacked
# While this currently makes the file backed, it doesn’t write it as sparse
adata.filename = backing_h5ad
adata.write()
assert not adata.file.is_open
assert adata.isbacked
adata.X[0, [0, 2]] = 10
adata.X[1, [0, 2]] = [11, 12]
adata.X[2, 1] = 13 # If it were written as sparse, this should fail
assert adata.isbacked
assert np.all(adata.X[0, :] == np.array([10, 0, 10]))
assert np.all(adata.X[1, :] == np.array([11, 0, 12]))
assert np.all(adata.X[2, :] == np.array([7, 13, 9]))
def test_backed_modification_sparse(
adata: ad.AnnData,
backing_h5ad: Path,
sparse_format: type[sparse.csr_matrix | sparse.csc_matrix],
):
adata.X[:, 1] = 0 # Make it a little sparse
adata.X = sparse_format(adata.X)
assert not adata.isbacked
adata.write(backing_h5ad)
adata = ad.read_h5ad(backing_h5ad, backed="r+")
assert adata.filename == backing_h5ad
assert adata.isbacked
pat = r"__setitem__ for backed sparse will be removed"
with pytest.warns(FutureWarning, match=pat):
adata.X[0, [0, 2]] = 10
with pytest.warns(FutureWarning, match=pat):
adata.X[1, [0, 2]] = [11, 12]
with (
pytest.warns(FutureWarning, match=pat),
pytest.raises(ValueError, match=r"cannot change the sparsity structure"),
):
adata.X[2, 1] = 13
assert adata.isbacked
assert np.all(adata.X[0, :] == np.array([10, 0, 10]))
assert np.all(adata.X[1, :] == np.array([11, 0, 12]))
assert np.all(adata.X[2, :] == np.array([7, 0, 9]))
# TODO: Work around h5py not supporting this
# def test_backed_view_modification(adata, backing_h5ad):
# adata.write(backing_h5ad)
# backed_adata = ad.read_h5ad(backing_h5ad, backed=True)
# backed_view = backed_adata[[1, 2], :]
# backed_view.X = 0
# assert np.all(backed_adata.X[:3, :] == 0)
# TODO: Implement
# def test_backed_view_modification_sparse(adata, backing_h5ad, sparse_format):
# adata[:, 1] = 0 # Make it a little sparse
# adata.X = sparse_format(adata.X)
# adata.write(backing_h5ad)
# backed_adata = ad.read_h5ad(backing_h5ad, backed=True)
# backed_view = backed_adata[[1,2], :]
# backed_view.X = 0
# assert np.all(backed_adata.X[[1,2], :] == 0)
@pytest.mark.parametrize(
("obs_idx", "var_idx"),
[
pytest.param(np.array([0, 1, 2]), np.array([1, 2]), id="no_dupes"),
pytest.param(np.array([0, 1, 0, 2]), slice(None), id="1d_dupes"),
pytest.param(np.array([0, 1, 0, 2]), np.array([1, 2, 1]), id="2d_dupes"),
],
)
def test_backed_duplicate_indices(tmp_path, obs_idx, var_idx):
"""Test that backed HDF5 datasets handle duplicate indices correctly."""
backed_pth = tmp_path / "backed.h5ad"
# Create test data
mem_adata = gen_adata((6, 4), X_type=asarray, **GEN_ADATA_NO_XARRAY_ARGS)
mem_adata.write(backed_pth)
# Load backed data
backed_adata = ad.read_h5ad(backed_pth, backed="r")
# Test the indexing
mem_result_multi = mem_adata[obs_idx, var_idx]
backed_result_multi = backed_adata[obs_idx, var_idx]
assert_equal(mem_result_multi, backed_result_multi)
@pytest.fixture
def h5py_test_data(tmp_path):
"""Create test HDF5 file with dataset for _safe_fancy_index_h5py tests."""
import h5py
h5_path = tmp_path / "test_dataset.h5"
test_data = np.arange(24).reshape(6, 4) # 6x4 matrix
with h5py.File(h5_path, "w") as f:
f.create_dataset("test", data=test_data)
return h5_path, test_data
@pytest.mark.parametrize(
("indices", "description"),
[
pytest.param((np.array([0, 1, 0, 2]),), "single_dimension_with_duplicates"),
pytest.param(
(np.array([0, 1, 2]), np.array([1, 2])), "multi_dimensional_no_duplicates"
),
pytest.param(
(np.array([0, 1, 0, 2]), np.array([1, 2])),
"multi_dimensional_duplicates_first_dim",
),
pytest.param(
(np.array([0, 1, 2]), np.array([1, 2, 1])),
"multi_dimensional_duplicates_second_dim",
),
pytest.param(
(np.array([0, 1, 0]), np.array([1, 2, 1])),
"multi_dimensional_duplicates_both_dims",
),
pytest.param(
(np.array([True, False, True, False, False, True]),), "boolean_arrays"
),
pytest.param((np.array([0, 1, 0]), slice(1, 3)), "mixed_indexing_with_slices"),
pytest.param(
(np.array([0, 1, 0]), [1, 2]), "mixed_indexing_with_slices_and_lists"
),
pytest.param((np.array([3, 1, 3, 0, 1]),), "unsorted_indices_with_duplicates"),
],
)
def test_safe_fancy_index_h5py_function(h5py_test_data, indices, description):
"""Test the _safe_fancy_index_h5py function directly with various indexing patterns."""
import h5py
from anndata._core.index import _safe_fancy_index_h5py
h5_path, test_data = h5py_test_data
with h5py.File(h5_path, "r") as f:
dataset = f["test"]
# Get result from the function
result = _safe_fancy_index_h5py(dataset, indices)
# Calculate expected result using NumPy
if isinstance(indices, tuple) and len(indices) > 1:
# Multi-dimensional case - use np.ix_ for fancy indexing
if isinstance(indices[1], slice):
# Handle mixed case with slice
expected = test_data[
np.ix_(indices[0], np.arange(indices[1].start, indices[1].stop))
]
else:
expected = test_data[np.ix_(*indices)]
else:
# Single dimensional case
expected = test_data[indices]
# Assert arrays are equal
np.testing.assert_array_equal(
result, expected, err_msg=f"Failed for test case: {description}"
)
|